Archiv der Kategorie: Rheuma

ORAC-Studie: Flavonoide der Acai-Beere besitzen hohes antioxidatives Potential

Die Acai-Beere (Euterpe oleracea) besitzt einen der höchsten ORAC-Werte aller bisher bekannten Früchte

Die Acai-Beere (Euterpe oleracea) ist eine schwarzviolette Frucht, die dem Amazonasgebiet entspringt. Seit einigen Jahren sind der Wissenschaft die bestechenden zellschützenden Fähigkeiten der Beerenfrucht bekannt.

Das Team um den amerikanischen Forscher Alexander Schauss erhob daraufhin 2010 eine wissenschaftliche Studie, in der die pflanzlichen Verbindungen der Beere auf ihre tatsächlichen antioxidativen (zellprotektiven) Wirkungen hin überprüft wurden.

In der Studie untersuchten die Forscher unter anderem sieben Pflanzenverbindungen der Acai-Beere, so genannte Flavonoide, auf ihr antioxidatives Potential: Orientin, Quercetin, Homoorientin, Luteolin, Vitexin, Chrysoeriol und Dihydrokaempferol.

Die antioxidative Stärke von Pflanzenstoffen wie Flavonoiden (aber auch von Vitaminen und anderen so genannten Mikronährstoffen) wird mit dem so genannten ORAC-Test ermittelt und in ORAC-Werten ausgedrückt (ORAC: Oxygen Radical Absorption Capacity).

In einfachen Worten gesprochen: Je höher der ORAC-Wert einer Frucht oder eines anderen Nahrungsmittels, desto besser.

Was sagen eigentlich ORAC-Werte aus?

ORAC ist eine Maßeinheit, durch die der Gehalt an so genannten Radikalfängern (Antioxidantien) in Nahrungsmitteln gemessen wird, die in der Lage sind, Freie Radikale zu binden. Freie Sauerstoffradikale greifen gesunde Körperzellen an und beschleunigen so den Alterungsprozess. Ein hoher ORAC-Wert bedeutet, dass dieses Lebensmittel eine hohe antioxidative Wirksamkeit besitzt.

Ergebnis der Studie

Die Acai-Beere weist 5.500 ORAC-Einheiten (pro 100 Gramm) auf, und damit einen der höchsten ORAC-Werte von allen Früchten und Gemüse. Zum Vergleich: 100 Gramm Heidelbeeren, besitzen einen ORAC Wert von 2.400.

Der physiologische Wert der Acai-Beere ergibt sich aus einer Kombination an Pflanzenstubstanzen wie Ballaststoffen, gesunden Fettsäuren, Aminosäuren, Vitaminen, Mineralstoffen sowie Anthocyanen, Proanthocyanidinen und andere Polyphenolen.

 

Quelle: Alexander G. Schauss, Jie Kanga, Zhimin Lib, Tong Wub, Gitte S. Jensenc, Alexander G. Schaussd, Xianli Wua: Anti-oxidant capacities of flavonoid compounds isolated from acai pulp (Euterpe oleracea Mart.)

Weiterführende Quellen: Wissenschaftliche Studie zur Acai-Beere

Vitamin B-Komplex

In Schale und Keim von Getreideprodukten sitzen die meisten B-Vitamine. Die Mehrheit der älteren Menschen nimmt jedoch mit der Nahrung zu wenige B-Vitamine auf.

Beschreibung

Der Vitamin B-Komplex besteht aus acht wasserlöslichen Vitaminen. Diese erfüllen vielfältige Aufgaben in verschiedenen Körpersystemen und Geweben. Gemeinsamkeiten: Alle B-Vitamine spielen eine unentbehrliche Rolle als Coenzyme bei der Verstoffwechslung von Kohlenhydraten, Fetten und Eiweiß. Gemeinsam steuern B-Vitamine zudem das Nervensystem, das ohne deren Zutun nicht funktionsfähig wäre. B-Vitamine werden daher auch als „Nervenvitamine“ (Neurotrope Vitamine; neuro = nerv, trop = ernährend) bezeichnet. Auch wichtig sind sie für die Aufrechterhaltung des Muskeltonus im Magen-Darm-Trakt und die Förderung der Gesundheit von Haut und Haaren. Sie dienen der Immunabwehr und der Entwicklung der Körperzellen.
Obwohl die einzelnen B-Vitamine deutlich unterschiedliche Verbindungen darstellen, sind ihre Stoffwechselwege eng miteinander verzahnt und voneinander abhängig. Da die Funktion eines B-Vitamins häufig andere B-Vitamine als Helfer benötigt, kommt ein isolierter B-Vitaminmangel selten vor. Die Anzeichen eines B-Vitaminmangels sind häufig uncharakteristisch und unspezifisch. Für einwandfreie Stoffwechselprozesse ist die regelmäßige, reichliche Zufuhr aller acht B-Vitamine essentiell.

Der Vitamin B-Komplex besteht aus

Thiamin = Vitamin B1
Riboflavin = Vitamin B2
Niacin/Nicotinamid = Vitamin B3
Pantothensäure = Vitamin B5
Pyridoxin = Vitamin B6
Biotin = Vitamin B7
Folsäure = Vitamin B9
Cobalamin = Vitamin B12

Funktionen und Anwendungsbereiche

Funktionen

Vitamin B1 (Thiamin)
Vitamin B1, oder Thiamin, dient als Katalysator bei der Energiegewinnung aus Kohlenhydraten. Es hilft zudem bei der Synthese von Nervenbotenstoffen (Neurotransmittern) sowie bei der Weiterleitung von Nervenimpulsen an Gehirn und Nervenzellen.
Thiaminmangel führt zu
• Konzentrationsschwächen
• emotionale Labilität
• Muskelschwund
• Kribbeln in Armen und Beinen, Fußbrennen
Der übliche präventive Dosierungsbereich für Thiamin liegt zwischen 10 und 50 mg. Nach therapeutischer Empfehlung sind höhere Dosen möglich.

Vitamin B2 (Riboflavin)
Riboflavin dient der Energieproduktion der Zelle. Es ist aber auch als Antioxidans sowie für intakte Haut und Schleimhäute zuständig. Das Vitamin ist wichtig für Haut, Nägel, Augen, Mund, Lippen und Zunge. Ein Riboflavinmangel äußert sich in Antriebslosigkeit, eingerissenen Mundwinkeln, lichtempfindlichen Augen, Hautrötung und Hautschuppung.
Der übliche präventive Dosierungsbereich für Riboflavin liegt zwischen 10 und 100 mg. Nach therapeutischer Empfehlung sind höhere Dosen möglich.

Vitamin B3 (Niacin/Nicotinamid)

Niacin, oder Vitamin B3, reguliert die Energiegewinnung und den Auf- und Abbau von Fetten, Kohlenhydraten und Proteinen. Es vermag eine Senkung der Cholesterinwerte und dient zur Vorbeugung und Behandlung von Arteriosklerose. Niacin-Mangel führt zu Pellagra, eine Krankheit mit Symptomen wie Depression, Schlafstörungen, Sonnenbrand, Durchfall, Reizbarkeit, geschwollene Zunge und geistige Verwirrung.
Der übliche präventive Dosierungsbereich für Niacin liegt zwischen 15 und 100 mg. Nach therapeutischer Empfehlung sind höhere Dosen möglich.

Vitamin B5 (Pantothensäure)

Pantothensäure oder auch “Anti-Stress-Vitamin” genannt, ist im Energiestoffwechsel sowie in der Bildung von Hormonen, Vitamin D und Neurotransmittern beteiligt. Akuter Mangel führt zu Müdigkeit, Übelkeit und Magen-Darm-Störungen.
Der übliche präventive Dosierungsbereich für Pantothensäure liegt zwischen 10 und 100 mg. Nach therapeutischer Empfehlung sind höhere Dosen möglich.

Vitamin B6 (Pyridoxin)

Vitamin B6, oder Pyridoxin, hilft dabei, Aminosäuren auf- und abzubauen, es ist wichtig für die Bildung roter Blutkörperchen, zur Homocystein-Entgiftung und für ein funktionierendes Nerven- und Immunsystem. Mängel führen zu Hauterkrankungen, Schwindel, Übelkeit, Blutarmut (Anämie), Krämpfe, Muskelabbau und häufig Nierensteine. Der übliche präventive Dosierungsbereich für Vitamin B6 liegt zwischen 10 und 25 mg.
Nach therapeutischer Empfehlung sind höhere Dosen möglich.

Biotin

Biotin, auch bekannt als „Vitamin H“ (Haut und Haar), hilft bei der Freisetzung von Energie aus Kohlenhydraten und Fetten und dem Stoffwechsel der Fettsäuren. Es fördert den Schwefeleinbau in Haare und Nägel. Der übliche präventive Dosierungsbereich für Biotin liegt zwischen 50 und 2.000 mcg. Nach therapeutischer Empfehlung sind höhere Dosen möglich.

Folsäure (Vitamin B9)
Folsäure ermöglicht dem Körper die Bildung von Hämoglobin zur Blutbildung. Folsäure ist in Wachstumsphasen sowie in und bereits VOR einer Schwangerschaft besonders wichtig. Folsäuremangel verursacht beim wachsenden Embryo Fehlbildungen, den so genannten Neuralrohrdefekt. Frauen, die schwanger sind oder planen, schwanger zu werden, sollten 600 mcg pro Tag ergänzen.
Der übliche präventive Dosierungsbereich für Folsäure liegt zwischen 400 und 800 mcg.

Vitamin B12 (Cobalamin)
Vitamin B12, auch bekannt als Cobalamin, fördert die Funktionen des Nervensystems und die Bildung von roten Blutkörperchen. Ist der Körper nicht in der Lage, ausreichend Vitamin B12 aufzunehmen, kann das zu einer bestimmte Form der Anämie (Blutarmut) führen. Bioverfügbares B12 gibt es nur in tierischen Quellen, wie Eier, Milch, Fisch, Fleisch und Leber. Vegetariern wird daher eine Cobalamin-Ergänzung sehr empfohlen.
Der übliche präventive Dosierungsbereich für Vitamin B12 liegt zwischen 10 und 600 mcg. Nach therapeutischer Empfehlung sind höhere Dosen möglich.


Erhöhter Bedarf und Mangel

Nach den für Deutschland, Österreich und die Schweiz vorliegenden Daten über die Versorgungssituation mit Vitaminen des B-Komplexes ist die Zufuhr sowohl für Frauen als auch für Männer in fast allen Altergruppen nicht optimal.
Quelle: Bundesinstitut für Risikobewertung: Domke A., Großklaus R., Niemann B., Przyrembel H., Richter K., Schmidt E., Weißenborn A., Wörner B., Ziegenhagen R. (Hrsg.) Verwendung von Vitaminen in Lebensmitteln – Toxikologische und ernährungsphysiologische Aspekte Teil 1. 119-151, 169-184 BfR-Hausdruckerei Dahlem, 2004

Häufigste Ursachen für erhöhten Bedarf
• unzureichende Zufuhr durch einseitige Ernährung, wenig Vollkorn-, viel Weißmehlprodukte
• hohe Stressbelastung, Leistungssport
• hoher Konsum an Kaffee, Alkohol oder Zigaretten
• Alter
• Schwangere und Stillende
• strenge Vegetarier
• Medikamenteneinnahme
• Einnahme oraler Kontrazeptiva („Pille“)
• Chronische Erkrankungen: Diabetes mellitus, Herz-Kreislauf-Erkrankungen, Krebs, Nieren- und Lebererkrankungen

Mangelsymptome
• Nervensystem: Konzentrationsschwäche, Rückgang der geistigen Leistungsfähigkeit, Antriebslosigkeit, Müdigkeit, Reizbarkeit, Depressionen, Appetitlosigkeit, Schlafstörungen, Kribbeln in Armen und Beinen, Fußbrennen, Entzündungen der Nerven, Taubheitsgefühl, Nervenschmerzen, neurologische Störungen
• Haut und Schleimhäute: Entzündung der Haut (Dermatitis), Wundheilungsstörungen, Bindehautentzündung, Magen-Darm-Störungen, rissige Mundwinkel
• Haare und Nägel: Haarausfall, brüchige Nägel
• Stoffwechsel und Immunsystem: Fettstoffwechselstörungen, erhöhte Homocysteinwerte, Blutarmut, Infektanfälligkeit, Immunschwäche, Muskelabbau


Literaturquellen

1. Bundesinstitut für Risikobewertung: Domke A., Großklaus R., Niemann B., Przyrembel H., Richter K., Schmidt E., Weißenborn A., Wörner B., Ziegenhagen R. (Hrsg.): Verwendung von Vitaminen in Lebensmitteln – Toxikologische und ernährungsphysiologische Aspekte Teil 1. 119-151, 169-184
BfR-Hausdruckerei Dahlem, 2004
1. Chen, M. et al. Plasma and erythrocyte thiamin concentration in geriatric out patients, Journal of the American College of Nutrition 15:231-236, 1903.
2. Cook, C., and Thomson, A. B-complex vitamins in the prophylaxis and treatment of Wernicke-Korsakoff Syndrome, British Journal of Clinical Practice 57(9):401-465, 1997.
3. Gold, M., et al, Plasma and Red Blood Cell Thiamine Deficiency in Patients with Dementia of the Alzheimer’s Type, Archives of Neurology 52:1081-1085, 1995.
4. Maebashi, M., et al. Therapeutic evaluation of the effect of biotin on hyperglycemia in patients with non-insulin diabetes mellitus, Journal of Clinical Biochemist and Nutrition 14:211-218, 1993.
5. Madigan, S., et al. Riboflavin and vitamin B6 intakes and status and biochemical response to riboflavin supplementation in free-living elderly people, American Journal of Clinical Nutrition 66:389-395, 1998.
6. Schoenen, J., et al. Effectiveness of High-Dose Riboflavin in Migraine Prophylaxis, Neurology 50:466-470, 1998.
7. Berge, K. et al. Coronary drug project: experience with niacin, European Journal of Clinical Pharmacology 40:40-51, 1991.
8. Berkson, B., M.D., Ph.D. All About the B Vitamins. Garden City Park, NY: Avery Publishing Group, 1998.
9. Berkson, B. The Alpha-Lipoic Acid Breahthrough. Rocklin, CA: Prima Publishing 1999.
Bundesinstitut für Risikobewertung: Domke A., Großklaus R., Niemann B., Przyrembel H., Richter K., Schmidt E., Weißenborn A., Wörner B., Ziegenhagen R. (Hrsg.)
Verwendung von Vitaminen in Lebensmitteln – Toxikologische und ernährungsphysiologische Aspekte Teil 1. 119-151, 169-184
BfR-Hausdruckerei Dahlem, 2004

 

Weiterführende Quellen:
Wikipedia-Eintrag zu B-Vitaminen

Vitamin-B-Komplex auf Vitaminwiki.net

 

Papain

Papayas sind reich an dem Fruchtenzym Papain, das die Verdauung, die Wundheilung, und das Immunsystem unterstützt

Beschreibung

Papain ist ein proteinspaltendes („proteolytisches“) Enzym, das natürlich in hoher Konzentration im Milchsaft der Papaya enthalten ist. Die Frucht Papaya stammt ursprünglich aus Mittelamerika, wo sie von den Ureinwohnen der „Baum guter Gesundheit“ genannt wurde. Die Ureinwohner hatten erkannt, dass der Milchsaft der Papaya bei einer Vielzahl an gesundheitlichen Leiden positive, physiologisch wirksame Effekte besitzt. Das enthaltene Papain wird zur Unterstützung der Verdauung sowie der Verbesserung der Wundheilung, der Entzündungslinderung und der Immunsteigerung und -regulierung eingesetzt.

Anwendungsbereiche und Wirkungen

Anwendungsbereiche

• Unterstützung der Verdauung (auch bei Verdauungsbeschwerden)
• entzündliche Erkrankungen und Sportverletzungen
• Immunregulierung und Schutz vor Autoimmunerkrankungen

Weiterer Effekt: Auflösung von Fibrin in den Gefäßen. Hierdurch kann der Entstehung von Arteriosklerose, Thrombosen und allgemein Herz-Kreislauf-Erkrankungen entgegen gesteuert werden.

Wirkungen

Unterstützung der Verdauung
Liegt eine unzureichende Enzymproduktion im Körper vor, z.B. durch akute oder chronische Entzündungen, funktionelle Störungen der Verdauungsdrüsen, Stress oder einseitige/fettreiche Ernährungsweise, versucht der Körper dies auszugleichen. Er fährt die Magensaftproduktion hoch, mit der häufigen Folge Sodbrennen, das den Verdauungstrakt schädigt. Weitere Folgen des Enzymmangels sind Verdauungsbeschwerden wie Völlegefühl, Blähungen, Aufstoßen, Bauchkrämpfe sowie häufig Vitamin-, Mineralstoff- und Nährstoffmangel, aufgrund der mangelhaften Resorption.
Papain unterstützt die enzymatische Verdauung der Nahrung, insbesondere die von Eiweiß. Papain hat sich bei Verdauungsbeschwerden wie Blähungen und Gärungsprozessen bewährt. Bei Zöliakie-Patienten wird zudem die Verdauung von Gliadin, einem Bestandteil des Glutens, gefördert. Geringe Gluten-Mengen werden dadurch verträglicher.

Unterstützung bei entzündlichen Erkrankungen und Sportverletzungen
Papain hat zudem antibakterielle, antioxidative und anti-inflammatorische (antientzündliche) Wirksamkeit. Eine Linderung durch den Verzehr des Papaya-Enzyms zeigt sich bei allen Entzündungen und entzündlichen Erkrankungen wie entzündlich-degenerativen Gelenkerkrankungen (Arthritis), Bronchialerkrankungen sowie Sportverletzungen wie Prellungen und Verstauchungen.

Immunregulierung und Schutz vor Autoimmunerkrankungen
Papain steuert der Entstehung von Autoimmunerkrankungen entgegen. Durch die Spaltung von Molekülen in einzelne Fragmente fördert es den Abbau schädlicher Immunkomplexe.

Wirkstoffe

Der Papaya-Milchsaft enthält ein Gemisch aus verschiedenen Enzymen. Das Enzymgemisch aus Esterasen, Proteasen und weiteren Enzymen zeichnet sich durch den hohen Anteil an Papain aus und enthält weiter die Enzyme Chymopapain A und B, Papaya Peptidase A, Papaya Lysozym, Papaya Glutamin Cyclotransferase, Papaya Endo-1,3-b-Glukanase und Cystatin, eine Cystein-Antiprotease. Daneben enthält die Papaya-Frucht die Vitamine A, B, C, D und E sowie Carotinoide.


Zufuhrempfehlung und Hinweise

Zufuhrempfehlung
Eine Ergänzung mit Papain erfolgt in täglichen Mengen zwischen 40 und 500 mg.
Im Handel wird das Enzym einzeln oder in Kombination mit Amylase und Protease angeboten. Den Vorzug ist immer der Kombination mit den Verdauungsenzymen Amylase und Protease zu geben. Die Enzyme Amylase und Protease tragen zur Kohlenhydrat- und Eiweißspaltung bei und unterstützen die Aufspaltungs- und Verwertungsprozesse zusätzlich.

Hinweis
Zur Verzehrzeit:
Zum Zweck der Verdauungsförderung sollte eine Enzymeinnahme gleich nach den Mahlzeiten eingenommen werden.
Zur Linderung von Entzündungen, zur Immunsteigerung oder der besseren Wundheilung sollte der Verzehr hingegen in 1,5- bis 2-stündigem Abstand zu den Mahlzeiten liegen. Hierdurch werden die Enzyme nicht zu Verdauungszwecken verbraucht.

Gegenanzeigen

Vor operativen Eingriffen sollte die Einnahme von Papain aufgrund der blutverdünnenden Eigenschaft mit dem behandelnden Arzt besprochen werden.


Literaturquellen

1. Blumenthal M., Busse W., Goldberg A. et al: The Complete German Commission E Monographs, 1st ed. American Botanical Council, Austin, TX; (1998).
2. Blanco C., Ortega N., Castillo R. et al: Carica papaya pollen allergy. Ann Allergy Asthma Immunol; 81(2):171-175. (1998).
3. Anon: Papaya. In: DerMarderosian A (ed): The Lawrence Review of Natural Products. Facts and Comparisons, St. Louis, MO. (2000).
4. Adebiyi A, Adaikan PG, Prasad RN. Papaya (Carica papaya) consumption is unsafe in pregnancy: fact or fable? Scientific evaluation of a common belief in some parts of Asia using a rat model. British Journal of Nutrition.88(2):199-203. (2002).
5. Bahl A, Chander S, Julka PK, et al. Micronuclei evaluation of reduction in neoadjuvant chemotherapy related acute toxicity in locally advanced lung cancer: an Indian experience. Journal of the Association of Physicians of India. 54:191-195. (2006).
6. Baker EL, Baker WL, Cloney DJ. Resolution of a phytobezoar with Aldoph’s Meat Tenderizer. Pharmacotherapy. 27(2):299-302. (2007).
7. Chaudhry A. Comparing two commercial enzymes to estimate in vitro proteolysis of purified or semi-purified proteins. Journal of Animal Physiology and Animal Nutrition (Berlin). 89(11-12):403-12. (2005).
8. Dawkins G, Hewitt H, Wint Y, Obiefuna PC, Wint B. Antibacterial effects of Carica papaya fruit on common wound organisms. West Indian Medical Journal. 52(4):290-292. (2003).
9. Grabovac V, Schmitz T, Foger F, Bernkop-Schnurch A. Papain: an effective permeation enhancer for orally administered low molecular weight heparin. Pharmaceutical Research. 24(5):1001-1006. (2007).
10. Kamaruzzaman M, Chowdhury SD, Podder CK, Pramanik MA. Dried papaya skin as a dietary ingredient for broiler chickens. British Poultry Science. 46(3):390-393. (2005).
11. Sadaghiani AM, Verhelst SH, Gocheva V, et al. Design, synthesis, and evaluation of in vivo potency and selectivity of epoxysuccinyl-based inhibitors of papain-family cysteine proteases. Chemical Biology 14(5):499-511. (2007).
12. Sakalova A, Bock PR, Dedik L, et al. Retrolective cohort study of an additive therapy with an oral enzyme preparation in patients with multiple myeloma. Cancer Chemotherapy and Pharmacology. 47 Suppl:S38-S44. (2001).
13. Starley IF, Mohammed P, Schneider G, Bickler SW. The treatment of paediatric burns using topical papaya. Burns.25(7):636-639. (1999).
14. Tavares FX, Deaton DN, Miller AB, Miller LR, Wright LL, Zhou HQ. Potent and selective ketoamide-based inhibitors of cysteine protease, cathepsin k. Journal of Medicinal Chemistry. 47(21):5049-5056. (2004).

 

Weiterführende Quellen

Wikipedia-Eintrag zu Papain

Grünlippmuschel

Grünlippmuschel (Perna canaliculus): Hochwertige Quelle für Aminozucker-Verbindungen (Glykosaminoglykane), die den Gelenkknorpel bilden

Beschreibung

Die neuseeländische Grünlippmuschel oder Grünschalmuschel (lat. perna canalicul) gehört zur Familie der Miesmuscheln. Grünlippmuschelpulver besitzt ausgezeichnete entzündungslindernde Eigenschaften und unterstützt die wichtige Funktion der Gelenkschmiere (Synovialflüssigkeit). Ihr Einsatz hat sich in der komplementären Behandlung von entzündlich-degenerativen Gelenkerkrankungen, wie Arthritis und Polyarthritis, neben der Gabe von Chondroitin und Glukosamin sehr bewährt.

Die Grünlippmuschel wird seit den sechziger Jahren des letzten Jahrhunderts in Neuseeland in dafür angelegten Aquakulturen gezüchtet.

Anwendungsbereiche und Wirkungen

Anwendungsbereich
Behandlung von Gelenkerkrankungen


Wirkungen

Grünlippmuschelpulver hat stark anti-inflammatorische Eigenschaften und hemmt Entzündungen des Bewegungsapparates und damit die Ursache schmerzhafter Gelenkbeschwerden bei Arthritis und Polyarthritis. Dies liegt in den enthaltenen Omega-3-Fettsäuren begründet. Sie hemmen die Bildung bestimmter Botenstoffe (Prostaglandine) aus Arachidonsäure und wirken so entzündlichen Prozessen entgegen, wie wissenschaftliche Studien zeigten.
Zudem enthält die Grünlippmuschel große Mengen an langkettigen Aminozucker-Verbindungen, die als Glykosaminoglykane (GAG) bezeichnet werden. Diese Verbindungen kommen im Knorpel und den Gelenken des Menschen vor und besitzen unentbehrliche Funktionen als Stütz-, Schutz- und Gleitsubstanzen. Glykosaminoglykane erhöhen die Viskosität der Gelenkschmiere (Synovialflüssigkeit), was zu einer besseren Versorgung des Knorpels mit essentiellen Nährstoffen führt. Die Gelenkschmiere kann dadurch ihre Funktion als Puffer wieder erfüllen, sodass die Knochenenden nicht mehr unmittelbar aneinander reiben.

Wirkstoffe

• Glykosaminoglykane (GAG): Aminozucker-Verbindungen, die in Knorpeln und Gelenken vorkommen und wichtige Funktionen als Stütz-, Schutz- und Gleitsubstanz haben.
• Omega-3-Fettsäuren (entzündungsmindernd)
• Vitamin B12
• Selen
• Eisen

Zufuhrempfehlung und Hinweise

Zufuhrempfehlung
Täglich werden 1000 bis 1200 mg Grünlippmuschelpulver empfohlen, am Besten auf mehrere Mahlzeiten verteilt.

Gegenanzeigen
Für Schwangere, Stillende sowie für Menschen mit Meeresfrüchte-Allergie ist die Grünlippmuschel nicht geeignet.

Kombi-Hinweis
Durch die kombinierte (gleichzeitige) Einnahme der Grünlippmuschel mit Vitamin E, Yucca (Schidigera) Extrakt und Ingwer können die Effekte der Glykosaminoglykane synergistisch verstärkt werden. Manche Nahrungsergänzungspräparate liefern bereits diese vorteilhafte Nährstoffkombination.
Effekte sind erst nach zwei- bis vierwöchiger (täglicher) Einnahme zu spüren.

Literaturquellen

1. Audeval B. Bouchacourt P. : Etude controle en double aveugle contra placebo de l’extrait de moule Pernacanaliculus dans les gonarthrose. Gaz Med Fr . 38:111–6. (1986).
2. Bui L., Pawlowski K., Bierer T.: A semi-moist treat containing green-lipped mussel (Perna canaliculus) can help to alleviate arthritic signs in dogs. FASEB J.;14:A748. (2000).
3. Bui L., Pawlowski K., Bierer T.: Reduction of arthritic signs in dogs fed a mainmeal dry diet containing green-lipped mussel (Perna canaliculus ). FASEB J.;14:A748. (2000).
4. Cho S., Jung Y., Seong S. et al.: Clinical efficacy and safety of Lyprinol, a patented extract from New Zealand green-lipped mussel (Perna canaliculus) in patients with osteoarthritis of the hip and knee: a multicenter 2-month clinical trial. Allerg Immunol . 35:212–6. (2003).
5. Caughey D., Grigor R., Caughey E., et al.: Perna canaliculus in the treatment of rheumatoid arthritis. Eur JRheumatol Inflamm. 6:197–200. (1983).
6. Cobb C., Ernst E.: Systematic review of a marine nutriceutical supplement in clinical trials for arthritis: the effectiveness of the New Zealand green-lipped mussel Perna canaliculus. Clin Rheumatol. (2005).
7. Emelyanov A., Fedoseev G., Krasnoschekova O., et al.: Treatment of asthma with lipid extract of New Zealand green-lipped mussel: a randomised clinical trial. Eur Respir J. 20:596–60. (2002).
8. Gibson R., Gibson S., Conway V., et al.: Perna canaliculus in the treatment of arthritis. Practitioner. 224:955–60. (1980).
9. Gibson R., Gibson S.: Green-lipped mussel extract in arthritis. Lancet ;1:439. (1981).
10. Gibson S., Gibson R.: The treatment of arthritis with a lipid extract of Perna canaliculus : a randomized trial. Comp Ther Med. 6:122–6. (1998).
11. Halpern G.: Anti-inflammatory effects of a stabilized lipid extract of Perna canaliculus (Lyprinol). AllergImmunol (Pairs). 32:272–8. (2000).
12. James M., Cleland L.: Dietary n-3 fatty acids and therapy for rheumatoid arthritis. Semin Arthritis Rheum. 27:85–97. (1997).
13. Larkin J., Capell H., Sturrock R.: Seatone in rheumatoid arthritis: a six-month placebo-controlled study. AnnRheum Dis.;44:199–201. (1985).
14. Rainsford K., Whitehouse M.: Gastroprotective and anti-inflammatory properties of green lipped mussel ( Pernacanaliculus ) preparation. Arzneimittelforschung;30:2128–32. (1980).

 

Weiterführende Quellen:

Wikipedia-Eintrag zu Grünlippmuschel

Grünlippmuschel-Artikel auf Vitaminwiki.net

 

Glucosamin und Chondroitin

Chondroitin und Glucosamin: fördern die Neubildung von Knorpelgewebe

Beschreibung

Glucosamin und Chondroitin sind natürliche Bestandteile des Gelenkknorpels. Als Grundssubstanzen dienen sie der ständigen Neubildung des Knorpels sowie der zähflüssigen Gelenkflüssigkeit (Gelenkschmiere, Synovia) und damit der Gleit- und Dämpfungsschichten des Bewegungsapparates. Glucosamin und Chondroitin fördern einerseits die Neubildung von Knorpelgewebe und hemmen andererseits Abbauprozesse der Chondrozyten (Knorpelzellen). Sie verbessern den Flüssigkeitsgehalt sowie die Nährstoffversorgung des Knorpels. Mediziner zählen Glucosamin und Chondroitin in der Therapie von degenerativen Gelenkerkrankungen zu den natürlichen Chondroprotectiva, den knorpeldegenerations-hemmenden Substanzen. Chondroitin und Glucosamin werden aus Schalentieren gewonnen und in der Behandlung degenerativer und entzündlicher Gelenkerkrankungen wie z.B. Arthrose und Arthritis zunehmend eingesetzt. Dabei fördern die beiden Knorpelsubstanzen einerseits den Wiederaufbau des Knorpelgewebes und haben gleichzeitig abschwellende, entzündungs- und schmerzlindernde Eigenschaften.
Die jeweils bioaktiven, also im Körper aktiven Formen, nennt man Chondroitinsulfat und Glucosaminsulfat.

Glucosamin
Glucosamin ist Hauptbaustein der so genannten Proteoglykane (genauer siehe unten), die aufgrund ihrer hohen Wasserbindekapazität als Gleitmittel in den Gelenken fungieren. Proteoglykane besitzen eine aufpolsternde Wirkung auf die Grundsubstanz des Knorpels. Glucosamin erhöht die Bildung von Proteoglykanen und Kollagen-Fasern und reguliert den Knorpel-Anabolismus (aufbauender Stoffwechselprozess). Hierdurch hilft Glucosamin dabei, abgenutzten Knorpel zu reparieren.

Chondroitin

Chondroitin ist ebenfalls ein essentieller Knorpelbestandteil. Chondroitin wirkt synergistisch mit Glucosamin. Es stimuliert die Knorpelbildung und verbessert die Elastizität und Belastbarkeit des Gelenkknorpels.

Funktionen und Anwendungsbereiche

Funktionen
Die Wirkmechanismen von Glucosamin und Chondroitin zusammengefasst sind:
• Aufbau und Schutz des Knorpelgewebes
• Verringerung knorpelabbauender Prozesse
• Steigerung der Viskosität der Gelenkflüssigkeit (Synovia, Synovial-Flüssigkeit)
• Gesteigerte Kollagen-, Proteoglycan- und Hyaluronsäure-Bildung durch die Knorpelzellen (Chondrozyten)
• Hemmung von kollagenabbauenden Enzymen
• Entzündungshemmung (anti-inflammatorische Wirkung)

Ausführlich

Der Gelenkknorpel gleicht einem Kissen mit Stoßdämpfereigenschaften, das aus einer Matrix aus Wasser, Kollagen-Fasern und so genannten Proteoglykanen, kurz PG, aufgebaut ist. Proteoglykane sind komplexe Zuckermoleküle, die die Zwischenräume ausfüllen in denen die Kollagen-Fasern eingebettet liegen. Aufgrund ihrer Fähigkeit, Wasser anzusammeln und zu speichern – ein Gramm kann 1,5 Liter Wasser binden – sind die Proteoglykane entscheidend für die Pufferwirkung des Gelenkknorpels verantwortlich. Glucosamin und Chondroitin sind für die Herstellung von Knorpelgewebe und der Gelenkschmiere erforderlich. Die Hauptwirkung von Glucosamin und Chondroitin ist die Bildung von Knorpelsubstanz, indem sie die Synthese von Stoffen stimulieren, die für die Knorpelregeneration benötigt werden.
Mit zunehmendem Alter verliert der Körper seine Fähigkeit, Glucosamin und Chondroitin herzustellen. Der Knorpel kann in der Folge nicht mehr ausreichend Wasser speichern und büßt große Teile seiner polsternden, stoßabsorbierende Wirkung ein. Das Knorpelgewebe wird dadurch immer schlechter ernährt und nur noch mangelhaft aufgebaut.
Glucosamin und Chondroitin sind als strukturgebende Bestandteil im Chitinkörper von Schalentieren vorhanden und werden mit der „normalen“ Ernährung so gut wie nicht aufgenommen.

Anwendungsbereiche
Die Supplementierung von Chondroitin und Glucosamin dient zur Therapie und Prävention degenerativer und entzündlicher Gelenkerkrankungen und Erkrankungen, bei denen ein gesteigerter Knorpelaufbau erforderlich ist wie:

• Arthritis, Arthrose
• Osteoarthritis
• Morbus Bechterew
• Sehnen- und Sehnenscheidenentzündung


Zufuhrempfehlung und Hinweise

Einnahme
• Die Zufuhr von hochdosiertem Glucosamin und Chondroitin sollte als regelmäßige Kur (mehrmals jährlich) über mehrere Monate erfolgen.
• Bei allen entzündlichen Gelenkerkrankungen empfiehlt sich die kombinierte Ergänzung von Chondroitin, Glucosamin und den Omega-3-Fettsäuren EPA und DHA zur Verminderung der Gelenkentzündung.

Zufuhrempfehlung
Als tägliche Dosis werden zwischen 1.000 und 1.500 mg Glucosaminsulfat und 500 bis 800 mg Chondroitinsulfat zu den Mahlzeiten empfohlen.

Gegenanzeigen

• Personen mit einer Schalentier-Allergie wird vor der Einnahme abgeraten.
• Diabetiker haben die Glucosamin-Ergänzung bei der Blutzuckerkontrolle zu beachten.
• Bei behandlungsbedürftigen Erkrankungen, der Einnahme von Medikamenten und in der Schwangerschaft und Stillzeit ist zudem mit dem behandelnden Arzt Rücksprache zu halten.


Literaturquellen

1. Bassleer C et al.: Stimulation of proteoglycan production by glucosamine sulfate in chondrocytes isolated from human osteoarthritic articular cartilege in vitro. Osteoarthritis Cartilage 1998 Nov;6(6):427-34.
2. Bourgeois P, Chales G, Dehais J, et al.: Efficacy and tolerability of chondroitin sulfate 1200 mg/day vs chondroitin sulfate 3 x 400 mg/day vs placebo. Osteoarthritis Cartilage . 1998;6(suppl A):25-30.
3. Brown KE, Leong K, Huang C, et al.: Gelatin/chondroitin 6-sulfate microspheres for the delivery of therapeutic proteins to the joint. Arthritis and Rheum. 1998;41(12):2185-2195.
4. Busci L, Poor G.: Efficacy and tolerability of oral chondroitin sulfate as a symptomatic slow-acting drug for osteoarthritis (SYSADOA) in the treatment of knee osteoarthritis. Osteoarthritis Cartilage. 1998;6(suppl A):31-36.
5. Chavez ML.: Glucosamine sulfate and chondroitin sulfates. Hosp Pharm . 1997;32(9):1275-1285.
6. Clegg DO, Reda DJ, Harris CL, et al.: Glucosamine, chondroitin sulfate, and the two in combination for painful knee osteoarthritis. N Engl J Med. 2006 Feb 23;354(8):
7. Das A, Hammond TA.: Efficacy of a combination of FCHG49 glucosamine hydrochloride, TRH122 low molecular weight sodium chondroitin sulfate and manganese ascorbate in the management of knee osteoarthritis. Osteoarthritis Cartilage . 2000;8(5):343-350.
8. Da Camara CC et al.: Glucosamine sulfate for osteoarthritis. Ann Pharmacother 1998 May;32(5):580-7.
9. Deal CL et al.: Nutraceuticals as therapeutic agents in osteoarthritis. The role of glucosamine, chondroitin sulfate, and collagen hydrolysate. Rheam Dis Clin North Am 1999 May;25(2):379-95.
10. Delafuente JC.: Glucosamine in the treatment of osteoarthritis. Rheum Dis Clin North Am 2000 Feb;26(1):1-11.
11. D’Ambrosio E, Casa B, Bompani R et al: Glucosamine sulfate: a controlled clinical investigation in arthrosis. Pharmatherapeutica 1981; 2: 504-508.
12. Deal CL, Moskowitz RW.: Nutraceuticals as therapeutic agents in osteoarthritis. The role of glucosamine, chondroitin sulfate, and collagen hydrolysate. Rheum Dis Clin North Am . 1999;25:379-395.
13. Gaby AR.: Natural treatments for osteoarthritis. Altern Med Rev . 1999;4(5):330-341.
14. Goedert MR, Jakes R, Spillantini MG, et al.: Assembly of microtubule-associated protein tau into Alzheimer-like filaments induced by sulphated glycosaminoglycans. Nature . 1996;383:550-553.
15. Houpt JB et al.: Effect of glucosamine hydrochloride in the treatment of pain of osteoarthritis of the knee. J Rheumatol 1999 Nov;26(11):2423-30.
16. Kelly GS.: The role of glucosamine sulfate and chondroitin sulfates in the treatment of degenerative joint disease. Alt Med Rev . 1998;3(1):27-39.
17. Leeb BF, Schweitzer H, Montag K, et al.: A metaanalysis of chondroitin sulfate in the treatment of osteoarthritis. J Rheumatol . 2000;27:205-211.
18. Lippiello L, Woodward J, Karpman R, et al.: In vivo chondroprotection and metabolic synergy of glucosamine and chondroitin sulfate. Clin Orthop . 2000;6(381):229-240.
19. Leffler CT et al.: Glucosamine, chondroitin, and manganese ascorbate for degenerative joint disease of the knee or low back: a randomized, double-blind, placebo-controlled pilot study. Mil Med 1999 Feb;164(2):85-91.
20. Major, PW et al.: Glucosamine vs Ibuprofeen in the Treatment of TMJ. J Rheumatol 2001; 28:1347-1355.
21. Glucosamine sulfate.: Alter Med Rev 1999 Jun;4(3):19305.
22. Mueller-Fassbender H, Bach GL, Haase W et al: Glucosamine sulfate compared to ibuprofen in osteoarthritis of the knee. Osteoarthritis Cartilage 1994; 2:61-69.
23. McAlindon TE, LaValley MP, Gulin JP, Felson DT.: Glucosamine and chondroitin for treatment of osteoarthritis: a systematic quality assessment and meta-analysis. JAMA . 2000;283(11):1469-1475.
24. Morreale P, Manopulo R, Galati M, et al.: Comparision of the anti-inflammatory efficacy of chondroitin sulfate and diclofenac sodium in patients with knee osteoarthritis. J Rheumatol . 1996;23:1385-1391.
25. Muller G, Kramer A.: In vitro action of a combination of selected antimicrobial agents and chondroitin sulfate [abstract]. Chem Biol Interact . 2000;124(2):77-85.
26. McAlindon TE et al.: Glucosamine and chondroitin for treatment of osteoarthritis: a systematic quality assessment and meta-analysis. JAMA 2000 Mar 15;283(11):1469-75.
27. McCarty MF et al.: Sulfates glycosaminoglycans and glucosamine may synergize in promoting synovial hyaluronic acid synthesis. Med Hypotheses 2000 May;54(5):798-802.
28. Obara M, Hirano H, Ogawa M, et al.: Does chondroitin sulfate defend the human uterine cervix against ripening in threatened premature labor? Am J Obstet Gynecol . 2000;182:334-339.
29. Reginster JY et al.: Long term effects of glucosamine sulphate on osteoarthritis progression : a randomised, placebo-controlled clinical trial. Lancet. 2001 Jan, 27; 357 (9252): 251-6
30. Ronca F, Palmieri L, Panicucci P, et al.: Anti-inflammatory activity of chondroitin sulfate.Osteoarthritis Cartilage . 1998; 6(suppl A):14-21.
31. Reichelt A, Forster KK, Fischer M et al: Efficacy and safety of intramuscular Glucosamine sulfate in osteoarthritis of the knee: a randomized, placebo-controlled, double blind study. Arzneimittelforschung 1994; 44:75-80.
32. Tapadinhas MJ, Rivera IC & Bignamini AA: Oral glucosamine sulphate in the management of arthrosis: report on a multi-centre open investigation in Portugal. Pharmatherapeutica 1982; 3:157-168.
33. Yun J, Tomida A, Nagata K et al: Glucose-regulated stresses confer resistance to VP-16 in human cancer cells through a decreased expression of DNA topoisomerase II. Oncol Res 1995; 7(12):583-590.
34. Towheed TE, Anastassiades TP.: Glucosamine and chondroitin for treating symptoms of osteoarthritis. JAMA . 2000;283(11):1483-1484.
35. Zhang JS, Imai T, Otagiri M.: Effects of a cisplatin-chondroitin sulfate A complex in reducing the nephrotoxicity of cisplatin. Arch Toxicol . 2000;74(6):300-307.

 

Weiterführende Quellen:

Wikipedia-Eintrag zu Chondroitin

Wikipedia-Eintrag zu Glucosamin

Glucosamin und Chondroitin-Artikel auf Vitaminwiki.net