Archiv der Kategorie: Fettleber

Vitamin B-Komplex

In Schale und Keim von Getreideprodukten sitzen die meisten B-Vitamine. Die Mehrheit der älteren Menschen nimmt jedoch mit der Nahrung zu wenige B-Vitamine auf.

Beschreibung

Der Vitamin B-Komplex besteht aus acht wasserlöslichen Vitaminen. Diese erfüllen vielfältige Aufgaben in verschiedenen Körpersystemen und Geweben. Gemeinsamkeiten: Alle B-Vitamine spielen eine unentbehrliche Rolle als Coenzyme bei der Verstoffwechslung von Kohlenhydraten, Fetten und Eiweiß. Gemeinsam steuern B-Vitamine zudem das Nervensystem, das ohne deren Zutun nicht funktionsfähig wäre. B-Vitamine werden daher auch als „Nervenvitamine“ (Neurotrope Vitamine; neuro = nerv, trop = ernährend) bezeichnet. Auch wichtig sind sie für die Aufrechterhaltung des Muskeltonus im Magen-Darm-Trakt und die Förderung der Gesundheit von Haut und Haaren. Sie dienen der Immunabwehr und der Entwicklung der Körperzellen.
Obwohl die einzelnen B-Vitamine deutlich unterschiedliche Verbindungen darstellen, sind ihre Stoffwechselwege eng miteinander verzahnt und voneinander abhängig. Da die Funktion eines B-Vitamins häufig andere B-Vitamine als Helfer benötigt, kommt ein isolierter B-Vitaminmangel selten vor. Die Anzeichen eines B-Vitaminmangels sind häufig uncharakteristisch und unspezifisch. Für einwandfreie Stoffwechselprozesse ist die regelmäßige, reichliche Zufuhr aller acht B-Vitamine essentiell.

Der Vitamin B-Komplex besteht aus

Thiamin = Vitamin B1
Riboflavin = Vitamin B2
Niacin/Nicotinamid = Vitamin B3
Pantothensäure = Vitamin B5
Pyridoxin = Vitamin B6
Biotin = Vitamin B7
Folsäure = Vitamin B9
Cobalamin = Vitamin B12

Funktionen und Anwendungsbereiche

Funktionen

Vitamin B1 (Thiamin)
Vitamin B1, oder Thiamin, dient als Katalysator bei der Energiegewinnung aus Kohlenhydraten. Es hilft zudem bei der Synthese von Nervenbotenstoffen (Neurotransmittern) sowie bei der Weiterleitung von Nervenimpulsen an Gehirn und Nervenzellen.
Thiaminmangel führt zu
• Konzentrationsschwächen
• emotionale Labilität
• Muskelschwund
• Kribbeln in Armen und Beinen, Fußbrennen
Der übliche präventive Dosierungsbereich für Thiamin liegt zwischen 10 und 50 mg. Nach therapeutischer Empfehlung sind höhere Dosen möglich.

Vitamin B2 (Riboflavin)
Riboflavin dient der Energieproduktion der Zelle. Es ist aber auch als Antioxidans sowie für intakte Haut und Schleimhäute zuständig. Das Vitamin ist wichtig für Haut, Nägel, Augen, Mund, Lippen und Zunge. Ein Riboflavinmangel äußert sich in Antriebslosigkeit, eingerissenen Mundwinkeln, lichtempfindlichen Augen, Hautrötung und Hautschuppung.
Der übliche präventive Dosierungsbereich für Riboflavin liegt zwischen 10 und 100 mg. Nach therapeutischer Empfehlung sind höhere Dosen möglich.

Vitamin B3 (Niacin/Nicotinamid)

Niacin, oder Vitamin B3, reguliert die Energiegewinnung und den Auf- und Abbau von Fetten, Kohlenhydraten und Proteinen. Es vermag eine Senkung der Cholesterinwerte und dient zur Vorbeugung und Behandlung von Arteriosklerose. Niacin-Mangel führt zu Pellagra, eine Krankheit mit Symptomen wie Depression, Schlafstörungen, Sonnenbrand, Durchfall, Reizbarkeit, geschwollene Zunge und geistige Verwirrung.
Der übliche präventive Dosierungsbereich für Niacin liegt zwischen 15 und 100 mg. Nach therapeutischer Empfehlung sind höhere Dosen möglich.

Vitamin B5 (Pantothensäure)

Pantothensäure oder auch “Anti-Stress-Vitamin” genannt, ist im Energiestoffwechsel sowie in der Bildung von Hormonen, Vitamin D und Neurotransmittern beteiligt. Akuter Mangel führt zu Müdigkeit, Übelkeit und Magen-Darm-Störungen.
Der übliche präventive Dosierungsbereich für Pantothensäure liegt zwischen 10 und 100 mg. Nach therapeutischer Empfehlung sind höhere Dosen möglich.

Vitamin B6 (Pyridoxin)

Vitamin B6, oder Pyridoxin, hilft dabei, Aminosäuren auf- und abzubauen, es ist wichtig für die Bildung roter Blutkörperchen, zur Homocystein-Entgiftung und für ein funktionierendes Nerven- und Immunsystem. Mängel führen zu Hauterkrankungen, Schwindel, Übelkeit, Blutarmut (Anämie), Krämpfe, Muskelabbau und häufig Nierensteine. Der übliche präventive Dosierungsbereich für Vitamin B6 liegt zwischen 10 und 25 mg.
Nach therapeutischer Empfehlung sind höhere Dosen möglich.

Biotin

Biotin, auch bekannt als „Vitamin H“ (Haut und Haar), hilft bei der Freisetzung von Energie aus Kohlenhydraten und Fetten und dem Stoffwechsel der Fettsäuren. Es fördert den Schwefeleinbau in Haare und Nägel. Der übliche präventive Dosierungsbereich für Biotin liegt zwischen 50 und 2.000 mcg. Nach therapeutischer Empfehlung sind höhere Dosen möglich.

Folsäure (Vitamin B9)
Folsäure ermöglicht dem Körper die Bildung von Hämoglobin zur Blutbildung. Folsäure ist in Wachstumsphasen sowie in und bereits VOR einer Schwangerschaft besonders wichtig. Folsäuremangel verursacht beim wachsenden Embryo Fehlbildungen, den so genannten Neuralrohrdefekt. Frauen, die schwanger sind oder planen, schwanger zu werden, sollten 600 mcg pro Tag ergänzen.
Der übliche präventive Dosierungsbereich für Folsäure liegt zwischen 400 und 800 mcg.

Vitamin B12 (Cobalamin)
Vitamin B12, auch bekannt als Cobalamin, fördert die Funktionen des Nervensystems und die Bildung von roten Blutkörperchen. Ist der Körper nicht in der Lage, ausreichend Vitamin B12 aufzunehmen, kann das zu einer bestimmte Form der Anämie (Blutarmut) führen. Bioverfügbares B12 gibt es nur in tierischen Quellen, wie Eier, Milch, Fisch, Fleisch und Leber. Vegetariern wird daher eine Cobalamin-Ergänzung sehr empfohlen.
Der übliche präventive Dosierungsbereich für Vitamin B12 liegt zwischen 10 und 600 mcg. Nach therapeutischer Empfehlung sind höhere Dosen möglich.


Erhöhter Bedarf und Mangel

Nach den für Deutschland, Österreich und die Schweiz vorliegenden Daten über die Versorgungssituation mit Vitaminen des B-Komplexes ist die Zufuhr sowohl für Frauen als auch für Männer in fast allen Altergruppen nicht optimal.
Quelle: Bundesinstitut für Risikobewertung: Domke A., Großklaus R., Niemann B., Przyrembel H., Richter K., Schmidt E., Weißenborn A., Wörner B., Ziegenhagen R. (Hrsg.) Verwendung von Vitaminen in Lebensmitteln – Toxikologische und ernährungsphysiologische Aspekte Teil 1. 119-151, 169-184 BfR-Hausdruckerei Dahlem, 2004

Häufigste Ursachen für erhöhten Bedarf
• unzureichende Zufuhr durch einseitige Ernährung, wenig Vollkorn-, viel Weißmehlprodukte
• hohe Stressbelastung, Leistungssport
• hoher Konsum an Kaffee, Alkohol oder Zigaretten
• Alter
• Schwangere und Stillende
• strenge Vegetarier
• Medikamenteneinnahme
• Einnahme oraler Kontrazeptiva („Pille“)
• Chronische Erkrankungen: Diabetes mellitus, Herz-Kreislauf-Erkrankungen, Krebs, Nieren- und Lebererkrankungen

Mangelsymptome
• Nervensystem: Konzentrationsschwäche, Rückgang der geistigen Leistungsfähigkeit, Antriebslosigkeit, Müdigkeit, Reizbarkeit, Depressionen, Appetitlosigkeit, Schlafstörungen, Kribbeln in Armen und Beinen, Fußbrennen, Entzündungen der Nerven, Taubheitsgefühl, Nervenschmerzen, neurologische Störungen
• Haut und Schleimhäute: Entzündung der Haut (Dermatitis), Wundheilungsstörungen, Bindehautentzündung, Magen-Darm-Störungen, rissige Mundwinkel
• Haare und Nägel: Haarausfall, brüchige Nägel
• Stoffwechsel und Immunsystem: Fettstoffwechselstörungen, erhöhte Homocysteinwerte, Blutarmut, Infektanfälligkeit, Immunschwäche, Muskelabbau


Literaturquellen

1. Bundesinstitut für Risikobewertung: Domke A., Großklaus R., Niemann B., Przyrembel H., Richter K., Schmidt E., Weißenborn A., Wörner B., Ziegenhagen R. (Hrsg.): Verwendung von Vitaminen in Lebensmitteln – Toxikologische und ernährungsphysiologische Aspekte Teil 1. 119-151, 169-184
BfR-Hausdruckerei Dahlem, 2004
1. Chen, M. et al. Plasma and erythrocyte thiamin concentration in geriatric out patients, Journal of the American College of Nutrition 15:231-236, 1903.
2. Cook, C., and Thomson, A. B-complex vitamins in the prophylaxis and treatment of Wernicke-Korsakoff Syndrome, British Journal of Clinical Practice 57(9):401-465, 1997.
3. Gold, M., et al, Plasma and Red Blood Cell Thiamine Deficiency in Patients with Dementia of the Alzheimer’s Type, Archives of Neurology 52:1081-1085, 1995.
4. Maebashi, M., et al. Therapeutic evaluation of the effect of biotin on hyperglycemia in patients with non-insulin diabetes mellitus, Journal of Clinical Biochemist and Nutrition 14:211-218, 1993.
5. Madigan, S., et al. Riboflavin and vitamin B6 intakes and status and biochemical response to riboflavin supplementation in free-living elderly people, American Journal of Clinical Nutrition 66:389-395, 1998.
6. Schoenen, J., et al. Effectiveness of High-Dose Riboflavin in Migraine Prophylaxis, Neurology 50:466-470, 1998.
7. Berge, K. et al. Coronary drug project: experience with niacin, European Journal of Clinical Pharmacology 40:40-51, 1991.
8. Berkson, B., M.D., Ph.D. All About the B Vitamins. Garden City Park, NY: Avery Publishing Group, 1998.
9. Berkson, B. The Alpha-Lipoic Acid Breahthrough. Rocklin, CA: Prima Publishing 1999.
Bundesinstitut für Risikobewertung: Domke A., Großklaus R., Niemann B., Przyrembel H., Richter K., Schmidt E., Weißenborn A., Wörner B., Ziegenhagen R. (Hrsg.)
Verwendung von Vitaminen in Lebensmitteln – Toxikologische und ernährungsphysiologische Aspekte Teil 1. 119-151, 169-184
BfR-Hausdruckerei Dahlem, 2004

 

Weiterführende Quellen:
Wikipedia-Eintrag zu B-Vitaminen

Vitamin-B-Komplex auf Vitaminwiki.net

 

Alfalfa

Alfalfa (Medicago sativa): Reichhaltige Pflanze mit hohem Anteil an Saponinen

Beschreibung

Alfalfa ist die aus dem Arabischen stammende Bezeichnung für die bei uns bekannte Pflanze Luzerne (Medicago sativa). Alfalfa ist eine reichhaltige Pflanze, die durch ihre Vielfalt an Inhaltsstoffen sowohl als natürliche Nährstoffquelle, Immunstimulans und als Tonikum (Stärkungsmittel) dient als auch prophylaktischen und therapeutisch eingesetzt wird.
Die Pflanzenstoffe, primär die zu 3 % enthaltenen Saponine, senken erhöhte Blutfettwerte, fördern die Verdauung, steuern klimakterischen Beschwerden entgegen, und besitzen stark antibiotische, entgiftende und entwässernde Eigenschaften.

Anwendungsbereiche und Wirkungen

Anwendungsbereiche
Alfalfa wird wegen seiner allgemein gesundheitsstärkenden Wirkungen und als Kräftigungsmittel (Tonikum) eingesetzt sowie bei/zur

• Entgiftung
• Entwässerung (Vorbeugung von Wassereinlagerungen)
• Diabetes mellitus
• arthritische Erkrankungen
• Störungen im Magen-Darm-System: Bauchschmerzen, Verdauungsbeschwerden, Reizdarm
• Herz-Kreislauf-Erkrankungen: erhöhte Blutfettwerte, Arteriosklerose, Bluthochdruck,
• Nervenerkrankungen: Demenz, Morbus Parkinson
• klimakterischen Beschwerden
Wirkungen
Senkung erhöhter Cholesterin- und Blutfettwerte
Alfalfa kann das Ausmaß einer bestehenden Arteriosklerose verringern sowie deren Entstehung vorbeugen. Der Grund hierfür liegt in den enthaltenen Saponinen. Diese hemmen die Cholesterinaufnahme im Darm und erniedrigen das Verhältnis von Gesamt- und LDL-Cholesterin zu HDL-Choelsterin. Weiterhin erhöhen die Steroide (z.B. Beta-Sitosterin) die Ausscheidung von fettähnlichen Substanzen und cholesterinhaltigen Gallensäuren im Stuhl.

Verdauung

Alfalfa fördert die Verdauungstätigkeit. Die Saponine stimulieren die Aktivität der Lipase, einem wichtigen Verdauungsenzym. Alfalfa hat sich bei Magenbeschwerden, Appetitlosigkeit, Blähungen und Bachkrämpfen bewährt.

Entgiftung, Entwässerung und Säure-Basen-Ausgleich
Die Saponine des Alfalfas besitzen die Eigenschaft, die Leber bei der Entgiftung, der Neutralisation und Ausscheidung von Giftstoffen, zu unterstützen und Nieren und Leber zu entlasten. Sie dienen gleich einem „biologischen Putzmittel“ zur Reinigung des Körpers, da sie toxische Stoffe im Darm binden und ausscheiden können. Die Pflanzenstoffe des Alfalfa wirken zudem harntreibend (entwässernd) und können ein leicht gestörtes Säure-Basen-Gleichgewicht wieder ausgleichen.

Hormonelle Wirkungen
Im hormonellen Regelsystem wirkt Alfalfa zweifach:
Das Phytoöstrogen Coumestrol besitzt die höchste östrogene Aktivität von allen bisher bekannten Pflanzenhormonen. Bei klimakterischen Beschwerden hat sich Alfalfa daher besonders bewährt.
Da Alfalfa Eiweißbausteine enthält, die den menschlichen Schilddrüsenhormone ähneln, kann sein Verzehr Schilddrüsenerkrankungen prophylaktisch entgegensteuern.

Bakterien- und Pilzhemmung
Saponine sind stark antibiotisch und hemmen das Bakterien- und Pilzwachstum. Ihre Bedeutung für die Pflanze liegt unter anderem darin, diese vor Pilz- und Parasitenbefall zu schützen.

Entzündungslinderung

Die Saponine des Alfalfas haben mit Cortison vergleichbare Effekte. Substanzen, die verantwortlich sind für entzündliche Erkrankungen (z.B. Gicht, Arthritis) werden gebunden und mit ihrer Hilfe aus dem Körper geschieden. Bei degenerativen Gelenkerkrankungen kann eine deutliche Besserung der Beweglichkeit durch Abschwellen und Entzündungsminderung sowie Schmerzlinderung erzielt werden.

Blutzucker- und Gewichtskontrolle
Aufgrund der enthaltenen Saponine ist nach der Einnahme von Alfalfa-Extrakt eine leichte Senkung des Blutzuckerspiegels resp. ein langsamerer Anstieg festzustellen. Diabetiker profitieren daher besonders vom Verzehr. Alfalfa steigert zudem das Sättigungsgefühl und unterstützt die Gewichtskontrolle.

Immunsteigerung
Die Inhaltsstoffe des Alfalfas, Saponine, Flavonoide und weitere Pflanzenstoffe und Enzyme, stärken die Körperabwehr und verbessern die Sauerstoffaufnahme des Blutes. Gegenstand derzeitiger Untersuchungen ist, inwieweit Alfalfa-Extrakt zudem zur Verbesserung der Immunantwort auf Impfungen beitragen kann.

Wirkstoffe
Die wichtigsten Inhaltstoffe des Alfalfas sind

– alle essentielle Aminosäuren
– Sekundäre Pflanzenstoffe: Saponine, Flavonoide, Isoflavonoide, Coumestrol u.a.
– Steroide: Beta-Sitosterin, Campesterol, Sigmasterol
– Stanchydrin
– Chlorophyll
– Vitamine: A, C, D, E, K, B1, B2, B3, B5, B6, B12, Biotin und Folsäure
– Mineralien: Calcium, Phosphor, Kalium, Eisen, Zink

Zufuhrempfehlungen und Hinweise

Zufuhrempfehlung
Alfalfa wird in einer täglichen Dosierung von 500 mg empfohlen. Eine hohe Bioverfügbarkeit liefert insbesondere Esterin Alfalfa-Extrakt.

Literaturquellen

1. Hänsel, R., Sticher, O.: Pharmakognosie – Pharmazie, 7. Auflage, Springer-Verlag Heidelberg (2004).
2. Heisler I., Sutherland M., Bachran C., Hebestreit P., Scznitger A,. Melzig M., Fuchs H. Combined application of saponin and chimeric toxins drastically enhances the targeted cytotoxicity on tumor cells. 106(1-2):123-37 (2005).
3. House, J.K. et al.:, J. Am. Vet. Med. Assoc, 209 (9), 1604-1607 (1996).
4. Kulling S.E., Watzl, B.: Ernährungs-Umschau 50 (6), 234-239 (2003).
5. Loesch-Fries, L. et al.: Expression of alfalfa mosaic virus RNA 4 in transgenic plants confers virus resistance. The embo Journal, Bd. 6, Nr. 7, 1987, Seiten 1845-1851, (1987).
6. Malinow, M.R. et al.: J. Clin. Invest. 67, 156-162 (1981).
7. Montanaro A., Bardana Jr., E.J., Rheum. Dis. Clin. North Am., 17 (2), 3232-332 (Medline-abstract)(1991).
8. Mohle-Boetani, J.C. et al.: Ann. Intern. Med., 135, 239-247 (2003).
9. Watzl, B.: Saponine Ernährungs-Umschau 48 Heft 6 (2001).
10. Wyk, B.-E., Wink, C., Wink., M.: Handbuch der Arzneipflanzen, Wissenschaftliche Verlaggesellschaft mbH Stuttgart (2004).

 

Weiterführende Quellen:

Taurin

Taurin steigert die Aktivität des Herzmuskels, weshalb es bei Herzmuskel-Erkrankungen eine positive Wirkung aufweist

Beschreibung

Taurin ist eine der am meisten vorkommenden Aminosäuren in unserem Körper. Im Gegensatz zu anderen Aminosäuren dient Taurin nicht zum Aufbau von Körpereiweiß, sondern erfüllt spezifische Aufgaben im Nervensystem und Gehirn, in der Netzhaut der Augen, im Herzmuskel und den Zellwänden. Die größten Mengen an Taurin befinden sich daher in diesen Organen sowie den Blutzellen. Durch eine ausgeprägt antioxidative Wirksamkeit schützt Taurin die Zellmembranen und im Besonderen die Netzhaut vor oxidativen Schäden, die durch Freie Radikale verursacht werden. Ebenfalls dient Taurin der Stabilisierung des Flüssigkeitshaushaltes in den Zellen und der Aufrechterhaltung des Immunsystems. Der Körper eines durchschnittlichen Erwachsenen mit einem Körpergewicht von 70 kg enthält etwa 70 g Taurin.
Therapeutisch wird Taurin neben der Netzhautdegeneration (AMD) vor allem bei Herz-Kreislauf-Erkrankungen, Leber- und Fettverdauungs-Störungen (fehlende Gallensäure) sowie bei Diabetes mellitus eingesetzt. Erniedrigte Taurinspiegel treten häufig in Verbindung mit Netzhautdegeneration, Wachstumsstörungen und Herzerkrankungen auf.

Funktionen und Anwendungsbereiche

Funktionen
• Stabilität der Zellmembranen
• Entwicklung des Nervensystems
• Antioxidative Wirksamkeit
• Bildung von Gallensäuren
• Entgiftung

Anwendungsbereiche

• Herz-Kreislauf-Erkrankungen
• Diabetes mellitus
• Altersbedingte Makula-Degeneration (AMD)
• Antioxidans
• Fettverdauungsstörungen
• Entgiftung
• Antioxidative Wirkung
• Alkoholabbau
• Lungenerkrankungen
• Nierenerkrankungen

Herz-Kreislauf-Erkrankungen
Für die Funktion von Herzmuskel und Blutgefäßen ist Taurin mehrfach wichtig: Es stimuliert den Einstrom und die Membranbindung von Calcium und unterstützt dadurch die Stabilisierung des Membranpotentials. Taurin wirkt positiv inotrop, d.h. es verstärkt die Kontraktionskraft des Herzmuskels und wird bei Herzmuskelschwäche eingesetzt.
Durch die antiarrhythmische Wirkung auf das Herz wird die Gefahr von Herzrhythmusstörungen gesenkt. Taurin wirkt zudem dem Verklumpen der Blutplättchen, also der Thrombozytenaggregation, entgegen. Da Taurin blutdrucksenkende, antientzündliche und antioxidative Eigenschaften besitzt, schützt es Blutgefäße und Herzmuskelzellen und steuert ebenfalls der Arteriosklerose-Entstehung entgegen.
Bei Herz-Kreislauf-Erkrankungen, einschließlich Bluthochdruck, ist eine Ergänzung von 500 bis 4.000 mg Taurin angezeigt.

Diabetes mellitus
Eine Ergänzung mit Taurin wirkt sich günstig auf die Prävention diabetischer Spätfolgen aus. Taurin schützt insbesondere vor Augen- und Nierenerkrankungen, die als typisch häufige Folgeerkrankungen bei Diabetikern auftreten.

Altersbedingte Makula-Degeneration (AMD)
Taurin reguliert den osmotischen Druck in der Zelle, was insbesondere für die Retina (Netzhaut) wichtig ist. Der osmotische Druck ist für die Ausbildung des Rezeptorpotenzials verantwortlich, das den Sehvorgang ermöglicht. Gleichzeitig werden die der Radikalbildung (Lipidoxidation) besonders stark ausgesetzten Netzhautzellen durch Taurin geschützt und Lipidoxidations-Prozesse gehemmt.
Taurin spielt für die Entwicklung der Retina eine zentrale Rolle und gilt in der Prophylaxe als wichtige Schutzsubstanz gegen Makula-Degeneration im Alter (AMD) und Katarakt (Grauer Star). Empirische Untersuchungen haben gezeigt, dass der ergänzende Verzehr von Taurin in Tagesdosen zwischen 500 und 2.000 mg der Entstehung einer beginnenden AMD entgegensteuern kann. Bei einer bereits vorliegenden Makula-Degeneration ist Taurin hochdosiert einzunehmen.

Antioxidans

Taurin ist ein wirksames Antioxidans, das die Zellmembranen und Gewebe vor oxidadiven Schäden insbesondere durch Lipidperoxidation (der in den Zellwänden eingelagerten Fettmoleküle) schützt.

Fettverdauungsstörungen

Taurin ist für die Bildung der Gallensalze (Gallensäuren der Leber) zuständig. Ein Taurinmangel hat eine Verdickung der Gallenflüssigkeit und im schlimmsten Fall Cholestasen (Gallenstauungen) zur Folge.

Entgiftung
Taurin kann Medikamentenwirkstoffe und toxische Substanzen in der Leber binden und entgiften, wodurch der Körper vor den schädlichen Wirkungen geschützt und die Leber entlastet wird.

Alkoholabbau
In ausreichender Menge erhöht Taurin die für den Alkoholabbau zuständige Enzymaktivität und mindert durch Alkohol hervorgerufene Leberschäden.

Gallensäure-Funktion, Fettverdauungsstörungen
Taurin wird in der Leber den Gallensäuren zugefügt, bevor diese in den Verdauungstrakt gelangen, sodass Taurin für deren Wirkung und die Fettresorption unerlässlich ist. Besonders bei Menschen, die wegen Gallenblasen-, Leber oder Bauchspeicheldrüsen-Erkrankungen an einer gestörten Fettresorption leiden, kann Taurin die Aufnahme von Fett (und fettlöslichen Vitaminen) verbessern.

Lungenerkrankungen

Eine Taurinverarmung des Lungegewebes kann zu Lungenentzündungen und zur Entstehung von Lungenödemen führen.

Nierenerkrankungen

Freie Radikale können die Membranen der Nierenkörperchen schädigen und dadurch die Entwicklung von Nierenkrankheiten begünstigen. Eine Ergänzung von Taurin wirkt dem entgegen und ist besonders in der Vorbeugung von diabetischen Spätfolgen wichtig.

Erhöhter Bedarf und Mangel

Häufigste Ursachen für erhöhten Bedarf
Die häufigsten Ursachen für einen erhöhten Bedarf an Taurin sind:
• Vegetarische Ernährung: Taurin kommt überwiegend in tierischen, nur wenig in pflanzlichen Lebensmitteln vor, weshalb die Taurin-Spiegel von Vegetariern oft sehr niedrig sind
• Einseitige Ernähung: Mangel an bestimmten Aminosäuren (Methionin, Cystein) und Vitamin B6
• Schwangerschaft, Wachstum
• Einnahme von Medikamenten
• gestörte Fettverdauung z.B. Gallenblasen- und Bauchspeicheldrüsen-Erkrankungen
• Arteriosklerose, erhöhter Blutdruck oder Risiko für Herz- und Gefäßkrankheiten
• chronisch-degenerative Erkrankungen
• chronische Leberfunktionsstörungen

Mangelsymptome
Ein Mangel an Taurin führt zu
• gestörter Immunfunktion
• erhöhter Entzündungsneigung
• erhöhter Gefahr für Netzhauterkrankungen (Makula-Degeneration, Grauer Star)
• erhöhter oxidativer Stress
• erhöhtes Risiko für Nieren- und Lungenerkrankungen
• Verdickung der Gallenflüssigkeit (Risiko für Gallenstauungen)

Zufuhrempfehlung
Eine alimentäre Ergänzung von Taurin erfolgt in Mengen zwischen 500 und 4.000 mg täglich.
Zur allgemeinen Prävention werden 1.000 mg Taurin empfohlen.
Bei beginnenden Augenerkrankungen, wie AMD oder Grauer Star, sowie Herz-Kreislauf-Erkrankungen sind hochdosierte Einnahmen von bis zu 4.000 mg üblich.

Gegenanzeigen
• Bei behandlungsbedürftigen Erkrankungen, der Einnahme von Medikamenten und in der Schwangerschaft und Stillzeit ist mit dem behandelnden Arzt Rücksprache zu halten.

Literaturquellen

1. Azuma J, Sawamura A, Awata N.: Usefulness of taurine in chronic congestive heart failure and its prospective application. Jpn Circ J. 1992;56:95-99.
2. Azuma J, Takihara K, Awata N, et al.: Beneficial effect of taurine on congestive heart failure induced by chronic aortic regurgitation in rabbits. Res Commun Chem Pathol Pharmacol. 1984;45:261-270.
3. Balakrishnan SD, Anuradha CV, Anitha Nandhini AT.: Taurine Modulates Antioxidant Potential and Controls Lipid Peroxidation in the Aorta of High Fructose-fed Rats. J Biochem Mol Biol Biophys 2002 Apr;6(2):129-33
4. Biasetti M, Dawson Jr R.: Effects of sulfur containing amino acids on iron and nitric oxide stimulated catecholamine oxidation. Amino Acids 2002;22(4):351-68.
5. Darling PB, Lepage G, Leroy C et al: Effect of taurine supplements on fat absorption in cystic fibrosis. Pediatr Res 1985; 19(6):578-582.
6. Dawson Jr R, Biasetti M, Messina S, Dominy J.: “The cytoprotective role of taurine in exercise-induced muscle injury.” Amino Acids 2002;22(4):309-24
7. Della Corte, L.; Taurine 4 : Taurine and Excitable Tissues; Advances in Experimental Medicine and Biology 483; Plenum Press; New York, (2000).
8. Franconi F, Bennardini F, Mattana A, et al.: Plasma and platelet taurine are reduced in subjects with insulin-dependent diabetes mellitus: Effects of taurine supplementation. Am J Clin Nutr. 1995;61:1115-1119.
9. Fujita, T., Sato, Y.: Hypotensive effect of taurine. Possible involvement of the sympathetic nervous system and endogenous opiates. J Clin Invest 82(3): 993-97. September 1988.
10. Foos TM, Wu JY.: “The role of taurine in the central nervous system and the modulation of intracellular calcium homeostasis.” Neurochem Res 2002 Feb;27(1-2):21-6.
11. Fukuyama Y, Ochiai Y.: Therapeutic trial by taurine for intractable childhood epilepsies. Brain Dev. 1982;4:63-69.
12. Gaby, A.R., Wright, J.V. “Nutritional factors in degenerative eye disorders: Cataract and macular degeneration.” J Adv Med 6(1): 27-4O, Spring 1993.
13. Gröber, U.: Mikronährstoffe. Beratungsempfehlungen für die Praxis. Stuttgart: Wissenschaftliche Verlagsgesellschaft mbH Stuttgart, (2006).
14. Hayes, K.C., Carey, R.E., et al. : Retinal degeneration associated with taurine deficiency in the cat Science l88(4191): 949-51, May 30, 1975.
15. Huxtable, R.: Taurine 2: basic and clinical aspects; Advances in Experimental. Medicine and Biology 403; Plenum Press; New York, (1996).
16. Huxtable R.: Taurine 2: basic and clinical aspects; Advances in Experimental Medicine and Biology 403; Plenum Press; New York, (1996).
17. Huxtable R.: Schaffer, S.; Taurine 3 : Cellular and Regulatiory Mechanisms; Advances in Experimental Medicine and Biology 442; Plenum Press; New York, (1998).
18. Huxtable R.: The Biology of Taurine; Advances in Experimental Medicine and Biology 217; Plenum Press; New York. (1987).
19. Iwata H.: Lombardini, J.; Taurine and the Heart; Kluwer Academic Publishers, London, (1989).
20. Lombardini J.: Schaffer, S.: Taurine – Nutritional value and mechanisms of action; Advances in Experimental Medicine and Biology 315; Plenum Press; New York, (1992).
21. Nakanishi K.: Recent bioorganic studies on rhodopsin and visual transduction, Chem. Pharm. Bull. 48, 1399 – 1409 (2000).
22. Matsuyama Y, Morita T, Higuchi M, et al.: The effect of taurine administration on patients with acute hepatitis. Prog Clin Biol Res. 1983;125:461-468.
23. Marchesi GF, Quattrini A, Scarpino O, et al.: Therapeutic effects of taurine in epilepsy: a clinical and polyphysiographic study [in Italian; English abstract]. Riv Patol Nerv Ment. 1975;96:166-184.
24. Matsuyama Y, Morita T, Higuchi M, et al.: The effect of taurine administration on patients with acute hepatitis. Prog Clin Biol Res. 1983;125:461-468.
25. Matsuzaki Y, Miyazaki T, Miyakawa S, Bouscarel B, Ikegami T, Tanaka N.: Decreased taurine concentration in skeletal muscles after exercise for various durations. Med Sci Sports Exerc 2002 May;34(5):793
26. Murakami S, Kondo Y, Sakurai T, Kitajima H, Nagate.: Taurine suppresses development of atherosclerosis in Watanabe heritable hyperlipidemic (WHHL) rabbits.” Atherosclerosis 2002 Jul;163(1):79-87
27. Oja, S.: Taurine; Progress in clinical and biological research 179; Liss, New York, (1985).
28. Podda M, Ghezzi C, Battezzati PM, et al.: Effects of ursodeoxycholic acid and taurine on serum liver enzymes and bile acids in chronic hepatitis. Gastroenterology. 1990;98:1044-1050.
29. Podda M, Ghezzi C, Battezzati PM, et al.: Effects of ursodeoxycholic acid and taurine on serum liver enzymes and bile acids in chronic hepatitis. Gastroenterology. 1990;98:1044-1050.
30. Pogan K.: Gewebespezifische Verwertung von Taurinkonjugaten, Köster, Berlin, (1998).
31. Pasantes-Morales H.: Taurine: Funcional Neurochemistry, Physiology and Cardiology; Progress in Clinical and Biological Research 351; Wiley – Liss, New York, (1990).
32. Scientific Comittee on Food: Opinion on Caffeine, Taurine and D-Glucurono-?-lacton as constituents of so-called „energy“ drinks; 21.01. (1999).
33. Steglich W., Fugmann B. Römp P.: Naturstoffchemie; Thieme; Stuttgart, (1997).
34. Sicuteri F, Fanciullacci M, Franchi G et al: Taurine as a therapeutic agent in vascular pain. Clin Med 1970; 77:21-32.
35. Shao A, Hathcock JN. Risk assessment for the amino acids taurine, l-glutamine and l-arginine. Regul Toxicol Pharmacol. 2008 Jan 26.

 

Weiterführende Quellen:

Wikipedia-Eintrag zu Taurin

Taurin-Artikel auf Vitaminwiki.net

 

Fettleber

Leber - das zentrale Organ unseres Organismus

Werden der Leber mehr Schadstoffe (z. B. Alkohol) zugeführt, als sie verarbeiten kann, kommt es zur Fettleber. Ist die Leber durch den Abbau von Schadstoffen wie z. B. Alkohol überlastet, kann Fett nicht in ausreichendem Maße verbrannt werden. Fett wird in der Leber gespeichert. Die Leber vergrößert sich und manchmal entsteht ein Druckgefühl (Völlegefühl oder leichte Übelkeit) im rechten Oberbauch am Rippenbogen. Häufig spürt man aber gar nichts. Die Leberfunktion ist noch nicht beeinträchtigt, und durch Gewichtsreduktion oder Alkoholverzicht bildet sich die Fettleber zurück. Fettleber hat nichts mit zu fetter Ernährung zu tun, sondern mit Fehlernährung! Häufig kommt eine Fettleber bei Alkoholikern oder Diabetikern vor, und manchmal auch in der Schwangerschaft.

Was Sie tun können

  • Vor vielen Erkrankungen der Leber kann man sich schützen. Wichtig ist eine ausgewogene Ernährung
  • Alkohol meiden, Übergewicht reduzieren
  • Gefährdete Personen sollten sich gegen Hepatitis B impfen lassen
  • Pflanzliche Präparate mit Mariendistelfrüchten, Vitamin E oder Selen wirken vorbeugend als Leberschutzmittel, indem sie Schadstoffe abfangen. Außerdem unterstützen sie den Heilungsprozess bei Lebererkrankungen.
  • Laktose ist ein osmotisch wirksames Abführmittel. Durch den künstlich erzeugten Durchfall wird bei Leberschäden verhindert, dass leberschädigende Stoffe aus dem Darm aufgenommen werden.
  • Auch B-Vitamine werden bei Leberschäden eingesetzt

 

Weiterführende Quelle:

Wikipedia-Eintrag zur Fettleber