Archiv der Kategorie: Diabetes mellitus

Vitamin B-Komplex

In Schale und Keim von Getreideprodukten sitzen die meisten B-Vitamine. Die Mehrheit der älteren Menschen nimmt jedoch mit der Nahrung zu wenige B-Vitamine auf.

Beschreibung

Der Vitamin B-Komplex besteht aus acht wasserlöslichen Vitaminen. Diese erfüllen vielfältige Aufgaben in verschiedenen Körpersystemen und Geweben. Gemeinsamkeiten: Alle B-Vitamine spielen eine unentbehrliche Rolle als Coenzyme bei der Verstoffwechslung von Kohlenhydraten, Fetten und Eiweiß. Gemeinsam steuern B-Vitamine zudem das Nervensystem, das ohne deren Zutun nicht funktionsfähig wäre. B-Vitamine werden daher auch als „Nervenvitamine“ (Neurotrope Vitamine; neuro = nerv, trop = ernährend) bezeichnet. Auch wichtig sind sie für die Aufrechterhaltung des Muskeltonus im Magen-Darm-Trakt und die Förderung der Gesundheit von Haut und Haaren. Sie dienen der Immunabwehr und der Entwicklung der Körperzellen.
Obwohl die einzelnen B-Vitamine deutlich unterschiedliche Verbindungen darstellen, sind ihre Stoffwechselwege eng miteinander verzahnt und voneinander abhängig. Da die Funktion eines B-Vitamins häufig andere B-Vitamine als Helfer benötigt, kommt ein isolierter B-Vitaminmangel selten vor. Die Anzeichen eines B-Vitaminmangels sind häufig uncharakteristisch und unspezifisch. Für einwandfreie Stoffwechselprozesse ist die regelmäßige, reichliche Zufuhr aller acht B-Vitamine essentiell.

Der Vitamin B-Komplex besteht aus

Thiamin = Vitamin B1
Riboflavin = Vitamin B2
Niacin/Nicotinamid = Vitamin B3
Pantothensäure = Vitamin B5
Pyridoxin = Vitamin B6
Biotin = Vitamin B7
Folsäure = Vitamin B9
Cobalamin = Vitamin B12

Funktionen und Anwendungsbereiche

Funktionen

Vitamin B1 (Thiamin)
Vitamin B1, oder Thiamin, dient als Katalysator bei der Energiegewinnung aus Kohlenhydraten. Es hilft zudem bei der Synthese von Nervenbotenstoffen (Neurotransmittern) sowie bei der Weiterleitung von Nervenimpulsen an Gehirn und Nervenzellen.
Thiaminmangel führt zu
• Konzentrationsschwächen
• emotionale Labilität
• Muskelschwund
• Kribbeln in Armen und Beinen, Fußbrennen
Der übliche präventive Dosierungsbereich für Thiamin liegt zwischen 10 und 50 mg. Nach therapeutischer Empfehlung sind höhere Dosen möglich.

Vitamin B2 (Riboflavin)
Riboflavin dient der Energieproduktion der Zelle. Es ist aber auch als Antioxidans sowie für intakte Haut und Schleimhäute zuständig. Das Vitamin ist wichtig für Haut, Nägel, Augen, Mund, Lippen und Zunge. Ein Riboflavinmangel äußert sich in Antriebslosigkeit, eingerissenen Mundwinkeln, lichtempfindlichen Augen, Hautrötung und Hautschuppung.
Der übliche präventive Dosierungsbereich für Riboflavin liegt zwischen 10 und 100 mg. Nach therapeutischer Empfehlung sind höhere Dosen möglich.

Vitamin B3 (Niacin/Nicotinamid)

Niacin, oder Vitamin B3, reguliert die Energiegewinnung und den Auf- und Abbau von Fetten, Kohlenhydraten und Proteinen. Es vermag eine Senkung der Cholesterinwerte und dient zur Vorbeugung und Behandlung von Arteriosklerose. Niacin-Mangel führt zu Pellagra, eine Krankheit mit Symptomen wie Depression, Schlafstörungen, Sonnenbrand, Durchfall, Reizbarkeit, geschwollene Zunge und geistige Verwirrung.
Der übliche präventive Dosierungsbereich für Niacin liegt zwischen 15 und 100 mg. Nach therapeutischer Empfehlung sind höhere Dosen möglich.

Vitamin B5 (Pantothensäure)

Pantothensäure oder auch “Anti-Stress-Vitamin” genannt, ist im Energiestoffwechsel sowie in der Bildung von Hormonen, Vitamin D und Neurotransmittern beteiligt. Akuter Mangel führt zu Müdigkeit, Übelkeit und Magen-Darm-Störungen.
Der übliche präventive Dosierungsbereich für Pantothensäure liegt zwischen 10 und 100 mg. Nach therapeutischer Empfehlung sind höhere Dosen möglich.

Vitamin B6 (Pyridoxin)

Vitamin B6, oder Pyridoxin, hilft dabei, Aminosäuren auf- und abzubauen, es ist wichtig für die Bildung roter Blutkörperchen, zur Homocystein-Entgiftung und für ein funktionierendes Nerven- und Immunsystem. Mängel führen zu Hauterkrankungen, Schwindel, Übelkeit, Blutarmut (Anämie), Krämpfe, Muskelabbau und häufig Nierensteine. Der übliche präventive Dosierungsbereich für Vitamin B6 liegt zwischen 10 und 25 mg.
Nach therapeutischer Empfehlung sind höhere Dosen möglich.

Biotin

Biotin, auch bekannt als „Vitamin H“ (Haut und Haar), hilft bei der Freisetzung von Energie aus Kohlenhydraten und Fetten und dem Stoffwechsel der Fettsäuren. Es fördert den Schwefeleinbau in Haare und Nägel. Der übliche präventive Dosierungsbereich für Biotin liegt zwischen 50 und 2.000 mcg. Nach therapeutischer Empfehlung sind höhere Dosen möglich.

Folsäure (Vitamin B9)
Folsäure ermöglicht dem Körper die Bildung von Hämoglobin zur Blutbildung. Folsäure ist in Wachstumsphasen sowie in und bereits VOR einer Schwangerschaft besonders wichtig. Folsäuremangel verursacht beim wachsenden Embryo Fehlbildungen, den so genannten Neuralrohrdefekt. Frauen, die schwanger sind oder planen, schwanger zu werden, sollten 600 mcg pro Tag ergänzen.
Der übliche präventive Dosierungsbereich für Folsäure liegt zwischen 400 und 800 mcg.

Vitamin B12 (Cobalamin)
Vitamin B12, auch bekannt als Cobalamin, fördert die Funktionen des Nervensystems und die Bildung von roten Blutkörperchen. Ist der Körper nicht in der Lage, ausreichend Vitamin B12 aufzunehmen, kann das zu einer bestimmte Form der Anämie (Blutarmut) führen. Bioverfügbares B12 gibt es nur in tierischen Quellen, wie Eier, Milch, Fisch, Fleisch und Leber. Vegetariern wird daher eine Cobalamin-Ergänzung sehr empfohlen.
Der übliche präventive Dosierungsbereich für Vitamin B12 liegt zwischen 10 und 600 mcg. Nach therapeutischer Empfehlung sind höhere Dosen möglich.


Erhöhter Bedarf und Mangel

Nach den für Deutschland, Österreich und die Schweiz vorliegenden Daten über die Versorgungssituation mit Vitaminen des B-Komplexes ist die Zufuhr sowohl für Frauen als auch für Männer in fast allen Altergruppen nicht optimal.
Quelle: Bundesinstitut für Risikobewertung: Domke A., Großklaus R., Niemann B., Przyrembel H., Richter K., Schmidt E., Weißenborn A., Wörner B., Ziegenhagen R. (Hrsg.) Verwendung von Vitaminen in Lebensmitteln – Toxikologische und ernährungsphysiologische Aspekte Teil 1. 119-151, 169-184 BfR-Hausdruckerei Dahlem, 2004

Häufigste Ursachen für erhöhten Bedarf
• unzureichende Zufuhr durch einseitige Ernährung, wenig Vollkorn-, viel Weißmehlprodukte
• hohe Stressbelastung, Leistungssport
• hoher Konsum an Kaffee, Alkohol oder Zigaretten
• Alter
• Schwangere und Stillende
• strenge Vegetarier
• Medikamenteneinnahme
• Einnahme oraler Kontrazeptiva („Pille“)
• Chronische Erkrankungen: Diabetes mellitus, Herz-Kreislauf-Erkrankungen, Krebs, Nieren- und Lebererkrankungen

Mangelsymptome
• Nervensystem: Konzentrationsschwäche, Rückgang der geistigen Leistungsfähigkeit, Antriebslosigkeit, Müdigkeit, Reizbarkeit, Depressionen, Appetitlosigkeit, Schlafstörungen, Kribbeln in Armen und Beinen, Fußbrennen, Entzündungen der Nerven, Taubheitsgefühl, Nervenschmerzen, neurologische Störungen
• Haut und Schleimhäute: Entzündung der Haut (Dermatitis), Wundheilungsstörungen, Bindehautentzündung, Magen-Darm-Störungen, rissige Mundwinkel
• Haare und Nägel: Haarausfall, brüchige Nägel
• Stoffwechsel und Immunsystem: Fettstoffwechselstörungen, erhöhte Homocysteinwerte, Blutarmut, Infektanfälligkeit, Immunschwäche, Muskelabbau


Literaturquellen

1. Bundesinstitut für Risikobewertung: Domke A., Großklaus R., Niemann B., Przyrembel H., Richter K., Schmidt E., Weißenborn A., Wörner B., Ziegenhagen R. (Hrsg.): Verwendung von Vitaminen in Lebensmitteln – Toxikologische und ernährungsphysiologische Aspekte Teil 1. 119-151, 169-184
BfR-Hausdruckerei Dahlem, 2004
1. Chen, M. et al. Plasma and erythrocyte thiamin concentration in geriatric out patients, Journal of the American College of Nutrition 15:231-236, 1903.
2. Cook, C., and Thomson, A. B-complex vitamins in the prophylaxis and treatment of Wernicke-Korsakoff Syndrome, British Journal of Clinical Practice 57(9):401-465, 1997.
3. Gold, M., et al, Plasma and Red Blood Cell Thiamine Deficiency in Patients with Dementia of the Alzheimer’s Type, Archives of Neurology 52:1081-1085, 1995.
4. Maebashi, M., et al. Therapeutic evaluation of the effect of biotin on hyperglycemia in patients with non-insulin diabetes mellitus, Journal of Clinical Biochemist and Nutrition 14:211-218, 1993.
5. Madigan, S., et al. Riboflavin and vitamin B6 intakes and status and biochemical response to riboflavin supplementation in free-living elderly people, American Journal of Clinical Nutrition 66:389-395, 1998.
6. Schoenen, J., et al. Effectiveness of High-Dose Riboflavin in Migraine Prophylaxis, Neurology 50:466-470, 1998.
7. Berge, K. et al. Coronary drug project: experience with niacin, European Journal of Clinical Pharmacology 40:40-51, 1991.
8. Berkson, B., M.D., Ph.D. All About the B Vitamins. Garden City Park, NY: Avery Publishing Group, 1998.
9. Berkson, B. The Alpha-Lipoic Acid Breahthrough. Rocklin, CA: Prima Publishing 1999.
Bundesinstitut für Risikobewertung: Domke A., Großklaus R., Niemann B., Przyrembel H., Richter K., Schmidt E., Weißenborn A., Wörner B., Ziegenhagen R. (Hrsg.)
Verwendung von Vitaminen in Lebensmitteln – Toxikologische und ernährungsphysiologische Aspekte Teil 1. 119-151, 169-184
BfR-Hausdruckerei Dahlem, 2004

 

Weiterführende Quellen:
Wikipedia-Eintrag zu B-Vitaminen

Vitamin-B-Komplex auf Vitaminwiki.net

 

Maitake

Maitake (Grifola frondosa): Vitalpilz mit medizinischer Wirkung

 

Beschreibung

Maitake ist die japanische Bezeichnung des bei uns als Klapperschwamm oder Laubporling bekannten Pilzes (Grifola frondosa). Maitake wird sowohl als Nahrungs- als auch Heilmittel in der europäischen und asiatischen Naturheilkunde seit mehreren Jahrhunderten verwendet. Wissenschaftlich belegt sind seine immunstärkenden und zellschützenden Wirkungen sowie die Unterstützung bei Krebstherapien, die Verbesserung der Insulinwirksamkeit und die Senkung der Blutfettwerte. Ebenfalls wird durch den Verzehr von Maitake der Einlagerung von Fetten sowie erhöhten Blutfettwerten (Cholesterin und Triglyceride) entgegengesteuert.

Anwendungsbereiche und Wirkungsweise

Anwendungsbereiche
Durch klinische Studien belegt sind die folgenden Wirkungen des Maitake:

• Immunstärkung (auch bei immunsuppressiven Erkrankungen, Chemo- und Strahlentherapien)
• Blutdruck senkende Wirkung
• Verbesserung der Insulinsensibilität
• Senkung der Blutfettwerte
• Krebsprävention und Krebshemmung


Immunstärkung (auch bei immunsupressiven Erkrankungen, Chemo- und Strahlentherapien)

Maitake enthält die Polysaccharide Beta-1,3-Glucan und Beta-1,6-Glucan. Diese Stoffe sind signifikant bei der Stimulierung der Immunabwehr beteiligt. Die so genannte Maitake-D-Fraktion kann die Zahl der T-Helfer-Zellen und der Makrophagen (Fresszellen) erhöhen sowie die Bildung so genannter Interleukine anregen. Inhaltsstoffe des Maitake sind auch in der Lage, das Wachstum schädlicher Bakterien und Viren zu hemmen. In Asien wird Maitake aufgrund seiner immunstimulatorischen Effekte prinzipiell begleitend bei einer Chemotherapie eingesetzt.

Blutdruck senkende Wirkung
Der so genannte systolische Blutdruck (Blutdruck, der bei Anstrengung und Aufregung steigt, Gegenteil: diastolisch) wird über ein spezielles Regulationssystem, das so genannte Renin-Angiotensin-System, geregelt. Das Renin-Angiotensin-System reguliert den Flüssigkeits- und Elektrolythaushalt (Natrium, Chlorid und Kalium) des Körpers und senkt erhöhten Blutdruck.

Verbesserung der Insulinsensibilität
Maitake erhöht die Sensitivität der Insulinrezeptoren, was für die Fortentwicklung des Diabetes mellitus entscheidend ist. Die Zellrezeptoren können hierdurch im Blut befindende Glukose (Zucker) schneller erkennen und die Insulinausschüttung kann unmittelbar und stärker erfolgen.

Senkung der Blutfettwerte
Maitake senkt die Cholesterin- und Triglycerid-Werte des Blutes. Der HDL-Spiegel wird dabei konstant gehalten und der Entstehung einer Fettleber entgegen gewirkt. Deutliche Senkungen der Blutfettwerte werden jedoch erst nach mehrmonatiger Anwendung sichtbar. Zu Beginn einer Maitake-Ergänzung kann der Cholesterin- oder Triglycerid-Spiegel sogar vorerst ansteigen, da die Fette als erstes aus den Organen (z.B. aus der Leber) freigesetzt werden.

Krebsprävention und Krebshemmung

Prophylaktisch schützt der Pilz gesunde Körperzellen vor Umweltgiften und Tumorerkrankungen. Verantwortlich für die Tumorzellen unterbindende Wirkung ist ein spezifisches Polysaccharid-Peptid (mit der Bezeichnung GFPS1b). Dieser Stoff unterbricht den Stoffwechsel der Tumorzellen, indem er die Mitochondrien-Membranen der Krebszelle verändert. Die D-Fraktion aus Maitake verbessert zudem die körpereigene Abwehr durch die Aktivierung von Makrophagen und T-Zellen sowie durch eine erhöhte Effizienz der natürlichen Killerzellen gegenüber Tumorzellen.

Wirkstoffe
Ein gemeinsamer Nenner verschiedener Heilpilze ist das Vorhandensein von komplexen Polysacchariden insbesondere der Beta-1,3- und Beta-1,6-Glucanen. Diese aktiven Bestandteile stärken die Immunabwehr und dienen auch als Immunmodulatoren. Die Polysaccharide im Maitake haben eine einzigartige Struktur und zählen zu den wirkungsvollsten erforschten Polysacchariden.
Maitake enthält außerdem ein breites Spektrum an Proteinen, Vitaminen, Mineralstoffen Bioflavonoiden, Lektinen und essentiellen Fettsäuren.

Zufuhrempfehlungen und Hinweise

Zufuhrempfehlung
Der Fruchtkörper des Maitake hat den höchsten gehalt der wichtigen Polysaccharide. Aus diesem Grund werden Ergänzungen des ganzen Fruchtkörpers empfohlen (400 bis 600 mg täglich). Standardisierte Extrakte gewährleisten eine hohe Wirkstoffkonzentration.

Hinweis zur Einnahme
Die Kombination mit Vitamin C wirkt synergistisch: Vitamin C verbessert die Resorption der im Maitake enthaltenen immunstimulierenden Polysaccharide, wodurch sie für die Zellen besser verfügbar werden.

Gegenanzeigen
Es sind keine Gegenanzeigen bekannt.

Literaturquellen

1. Inoue, Kodama, Nanba: Effect of Maitake (Grifola frondosa) D-Fraction on the Control of the T-Lymph Node Th-1/Th-2 Proportion; Biol. Pharm. Bull. 25(4) 536-540 (2002)
2. Hishida, I.; Nanba, H.; Kuoda, H.: Antitumor activity exhibited by orally administered extract from fruit body of Grifola frondosa (Maitake). In: Chem. Pharm. Bulletin,36:1819-27. (1988).
3. Moss, R.W.: Cancer Therapy. Equinox Press, New York, (1992).
4. Ohno, N.; Suzuki I.; Oikawa S.; Sato K.; Miyazaki T.; Yadomae T.: Antitumor activity and structural characterization of glucans extracted from cultured fruit bodies of Grifola frondosa. In: Chem. Pharm. Bulletin, 32:1142-51. (1984).
5. Hiroyuki Horio, Masaru Ohtsuru; Maitake (Grifola frondosa) Improve Glucose Tolerance of Experimental Diabetic Rats; J Nutr Sci Vitaminol, 47, 57-63, 2001 (2001).
6. Keiko Kubo, Hisao Aoki, Horoaki Nanba; Anti-Diabetic Activity Present in the Fruit Body of Grifola frondosa (Maitake); Biol.Pharm.Bull. 17(8) 1106-1110 (1994).
7. Kubo, Nanba: Anti-Hyperliposis Effect of Maitake Fruit Body (Grifola frondosa); Biol. Pharm. Bull. 20(7) 781-785 (1997)
8. V.Manohar, N.A.Talpur, B.W.Echard, S.Liebermann, H.G.Preuss; Effects of a water-soluble extract of maitake mushroom on circulating glucose/insulin concentrations in KK mice; Diabetes, Obesity and Metabolism, 4, 43-48 (2002).
9. Keiko Kubo, Hiroaki Nanba; Anti-Hyperliposis Effect of Maitake Fruit Body (Grifola frondosa); Biol. Pharm. Bull. 20(7) 781-785 (1997).
10. Nadeem A. Talpur, Bobby W.: Antihypertensive and metabolic effects of whole Maitake mushroom powder and its fractions in two rat strains; Molecular and Cellular Biochemistry 237: 129-136, (2002).
11. Atsuyuki Inoue, Noriko Kodama, Hiroaki Nanba; Effect of Maitake (Grifola frondosa) D-Fraction on the Control of the T-Lymph Node Th-1/Th-2 Proportion; Biol. Pharm. Bull. 25(4) 536-540. (2002).
12. Lininger S (ed): The Natural Pharmacy. Prima Health Publishing, Rocklin, CA; (1998).
13. Lindequist, U; Teuscher, E; Narbe, G: Neue Wirkstoffe aus Basidiomyceten (Internetfassung). (1990).
14. Nadeem A. Talpur, Bobby W. Echard: Antihypertensive and metabolic effects of whole Maitake mushroom powder and its fractions in two rat strains; Molecular and Cellular Biochemistry 237: 129-136, 2002
15. el-Mekkawy, S; Meselhy, M R; Nakamura, N et al.: Anti-HIV-1 and anti-HIV-1-protease substances from Ganoderma lucidum, in: Phytochemistry; vol 49(6), pp 1651-7. (1998).
16. Cunningham-Rundles S, Lin H, Cassileth B. Are Botanical Glucans Effective in Enhancing Tumoricidal Cell Activity? American Society for Nutrition. J. Nutr. 2005. 135: 2919S.
17. Hong F, Yan J, Baran JT, et al. Mechanism by which orally administered beta-1,3-glucans enhance the tumoricidal activity of antitumor monoclonal antibodies in murine tumor models. J Immunol. 2004;173:797-806.
18. Ko YT, Lin YL. 1,3-beta-glucan quantification by a fluorescence microassay and analysis of its distribution in foods. J Agric Food Chem. 2004; 252:3313-3318.
19. Kodoma N, Komuta K, Nanba H. Can maitake MD-fraction aid cancer patients? Altern Med Rev. 2002; 7:451.
20. Kodama N, Murata Y, Asakawa A, et al. Maitake D-Fraction enhances antitumor effects and reduces immunosuppression by mitomycin-C in tumor-bearing mice. Nutrition. 2005; 21:624-629.
21. Konno S.: Potential growth inhibitory effect of maitake D-fraction on canine cancer cells. Vet Ther. 2004; 5:263-271.
22. Memorial Sloan-Kettering Cancer Institute. Maitake. Available at: https://www.mskcc.org/mskcc/html/69294.cfm. Accessed June 15, 2007.
23. Nanba H. Activity of maitake D-fraction to inhibit carcinogenesis and metastasis. Ann NY Acad Sci. 1995;768:243-245.
24. Nanba H, Kubo K. Effect of maitake D-fraction on cancer prevention. Ann NY Acad Sci. 1997;833:204-207.
25. Talpur NA, Echard BW, Fan AY: Antihypertensive and metabolic effects of whole Maitake mushroom powder and its fractions in two rat strains. Mol Cell Biochem. 2002;237129-237136.
26. Tanaka H, Tsunematsu K, Nakamura N, et al.: Successful treatment of hypersensitivity pneumonitis caused by Grifola frondosa (Maitake) mushroom using a HFA-BDP extra-fine aerosol. Intern Med. 2004;43:737-740.
27. Kubo, Aoki, Nanba: Anti-Diabetic Activity Present in the Fruit Body of Grifola frondosa (Maitake); Biol.Pharm.Bull. 17(8) 1106-1110 (1994)
28. Kubo, Nanba: Anti-Diabetic Mechanism of Maitake (Grifola frondosa); Department of Microbial Chemistry, Kobe Pharmaceutical University, Motoyama, Higashinada, Kobe 658, Japan.
29. Horio, Ohtsuru: Maitake (Grifola frondosa) Improve Glucose Tolerance of Experimental Diabetic Rats; J Nutr Sci Vitaminol, 47, 57-63, 2001.
30. V.Manohar, N.A.Talpur, B.W.Echard, S.Liebermann, H.G.Preuss: Effects of a water-soluble extract of maitake mushroom on circulating glucose/insulin concentrations in KK mice. Diabetes, Obesity and Metabolism, 4, 2002, 43-48.

 

Weiterführende Quellen:

Wikipedia-Artikel zu Maitake

Maitake-Artikel auf Vitaminwiki.net

 

 

Alfalfa

Alfalfa (Medicago sativa): Reichhaltige Pflanze mit hohem Anteil an Saponinen

Beschreibung

Alfalfa ist die aus dem Arabischen stammende Bezeichnung für die bei uns bekannte Pflanze Luzerne (Medicago sativa). Alfalfa ist eine reichhaltige Pflanze, die durch ihre Vielfalt an Inhaltsstoffen sowohl als natürliche Nährstoffquelle, Immunstimulans und als Tonikum (Stärkungsmittel) dient als auch prophylaktischen und therapeutisch eingesetzt wird.
Die Pflanzenstoffe, primär die zu 3 % enthaltenen Saponine, senken erhöhte Blutfettwerte, fördern die Verdauung, steuern klimakterischen Beschwerden entgegen, und besitzen stark antibiotische, entgiftende und entwässernde Eigenschaften.

Anwendungsbereiche und Wirkungen

Anwendungsbereiche
Alfalfa wird wegen seiner allgemein gesundheitsstärkenden Wirkungen und als Kräftigungsmittel (Tonikum) eingesetzt sowie bei/zur

• Entgiftung
• Entwässerung (Vorbeugung von Wassereinlagerungen)
• Diabetes mellitus
• arthritische Erkrankungen
• Störungen im Magen-Darm-System: Bauchschmerzen, Verdauungsbeschwerden, Reizdarm
• Herz-Kreislauf-Erkrankungen: erhöhte Blutfettwerte, Arteriosklerose, Bluthochdruck,
• Nervenerkrankungen: Demenz, Morbus Parkinson
• klimakterischen Beschwerden
Wirkungen
Senkung erhöhter Cholesterin- und Blutfettwerte
Alfalfa kann das Ausmaß einer bestehenden Arteriosklerose verringern sowie deren Entstehung vorbeugen. Der Grund hierfür liegt in den enthaltenen Saponinen. Diese hemmen die Cholesterinaufnahme im Darm und erniedrigen das Verhältnis von Gesamt- und LDL-Cholesterin zu HDL-Choelsterin. Weiterhin erhöhen die Steroide (z.B. Beta-Sitosterin) die Ausscheidung von fettähnlichen Substanzen und cholesterinhaltigen Gallensäuren im Stuhl.

Verdauung

Alfalfa fördert die Verdauungstätigkeit. Die Saponine stimulieren die Aktivität der Lipase, einem wichtigen Verdauungsenzym. Alfalfa hat sich bei Magenbeschwerden, Appetitlosigkeit, Blähungen und Bachkrämpfen bewährt.

Entgiftung, Entwässerung und Säure-Basen-Ausgleich
Die Saponine des Alfalfas besitzen die Eigenschaft, die Leber bei der Entgiftung, der Neutralisation und Ausscheidung von Giftstoffen, zu unterstützen und Nieren und Leber zu entlasten. Sie dienen gleich einem „biologischen Putzmittel“ zur Reinigung des Körpers, da sie toxische Stoffe im Darm binden und ausscheiden können. Die Pflanzenstoffe des Alfalfa wirken zudem harntreibend (entwässernd) und können ein leicht gestörtes Säure-Basen-Gleichgewicht wieder ausgleichen.

Hormonelle Wirkungen
Im hormonellen Regelsystem wirkt Alfalfa zweifach:
Das Phytoöstrogen Coumestrol besitzt die höchste östrogene Aktivität von allen bisher bekannten Pflanzenhormonen. Bei klimakterischen Beschwerden hat sich Alfalfa daher besonders bewährt.
Da Alfalfa Eiweißbausteine enthält, die den menschlichen Schilddrüsenhormone ähneln, kann sein Verzehr Schilddrüsenerkrankungen prophylaktisch entgegensteuern.

Bakterien- und Pilzhemmung
Saponine sind stark antibiotisch und hemmen das Bakterien- und Pilzwachstum. Ihre Bedeutung für die Pflanze liegt unter anderem darin, diese vor Pilz- und Parasitenbefall zu schützen.

Entzündungslinderung

Die Saponine des Alfalfas haben mit Cortison vergleichbare Effekte. Substanzen, die verantwortlich sind für entzündliche Erkrankungen (z.B. Gicht, Arthritis) werden gebunden und mit ihrer Hilfe aus dem Körper geschieden. Bei degenerativen Gelenkerkrankungen kann eine deutliche Besserung der Beweglichkeit durch Abschwellen und Entzündungsminderung sowie Schmerzlinderung erzielt werden.

Blutzucker- und Gewichtskontrolle
Aufgrund der enthaltenen Saponine ist nach der Einnahme von Alfalfa-Extrakt eine leichte Senkung des Blutzuckerspiegels resp. ein langsamerer Anstieg festzustellen. Diabetiker profitieren daher besonders vom Verzehr. Alfalfa steigert zudem das Sättigungsgefühl und unterstützt die Gewichtskontrolle.

Immunsteigerung
Die Inhaltsstoffe des Alfalfas, Saponine, Flavonoide und weitere Pflanzenstoffe und Enzyme, stärken die Körperabwehr und verbessern die Sauerstoffaufnahme des Blutes. Gegenstand derzeitiger Untersuchungen ist, inwieweit Alfalfa-Extrakt zudem zur Verbesserung der Immunantwort auf Impfungen beitragen kann.

Wirkstoffe
Die wichtigsten Inhaltstoffe des Alfalfas sind

– alle essentielle Aminosäuren
– Sekundäre Pflanzenstoffe: Saponine, Flavonoide, Isoflavonoide, Coumestrol u.a.
– Steroide: Beta-Sitosterin, Campesterol, Sigmasterol
– Stanchydrin
– Chlorophyll
– Vitamine: A, C, D, E, K, B1, B2, B3, B5, B6, B12, Biotin und Folsäure
– Mineralien: Calcium, Phosphor, Kalium, Eisen, Zink

Zufuhrempfehlungen und Hinweise

Zufuhrempfehlung
Alfalfa wird in einer täglichen Dosierung von 500 mg empfohlen. Eine hohe Bioverfügbarkeit liefert insbesondere Esterin Alfalfa-Extrakt.

Literaturquellen

1. Hänsel, R., Sticher, O.: Pharmakognosie – Pharmazie, 7. Auflage, Springer-Verlag Heidelberg (2004).
2. Heisler I., Sutherland M., Bachran C., Hebestreit P., Scznitger A,. Melzig M., Fuchs H. Combined application of saponin and chimeric toxins drastically enhances the targeted cytotoxicity on tumor cells. 106(1-2):123-37 (2005).
3. House, J.K. et al.:, J. Am. Vet. Med. Assoc, 209 (9), 1604-1607 (1996).
4. Kulling S.E., Watzl, B.: Ernährungs-Umschau 50 (6), 234-239 (2003).
5. Loesch-Fries, L. et al.: Expression of alfalfa mosaic virus RNA 4 in transgenic plants confers virus resistance. The embo Journal, Bd. 6, Nr. 7, 1987, Seiten 1845-1851, (1987).
6. Malinow, M.R. et al.: J. Clin. Invest. 67, 156-162 (1981).
7. Montanaro A., Bardana Jr., E.J., Rheum. Dis. Clin. North Am., 17 (2), 3232-332 (Medline-abstract)(1991).
8. Mohle-Boetani, J.C. et al.: Ann. Intern. Med., 135, 239-247 (2003).
9. Watzl, B.: Saponine Ernährungs-Umschau 48 Heft 6 (2001).
10. Wyk, B.-E., Wink, C., Wink., M.: Handbuch der Arzneipflanzen, Wissenschaftliche Verlaggesellschaft mbH Stuttgart (2004).

 

Weiterführende Quellen:

Vitamin B6 (Pyridoxin)

Vitamin B6 ist an der Bildung verschiedener Nervenbotenstoffe, unter anderem Serotonin und Dopamin, beteiligt.

Beschreibung

Vitamin B6 (Pyridoxin) ist eines von acht essentiellen B-Vitaminen. Die aktive Form von Vitamin B6, Pyridoxal-Phosphat, erfüllt in mehr als 100 enzymatischen Reaktionen im Körper eine zentrale Rolle. Vor allem im Aminosäure-Stoffwechsel, dem Auf- und Abbau von Proteinen, ist Pyridoxalphosphat wesentlich beteiligt – ohne Vitamin B6 bräche der Aminosäurestoffwechsel unaufhaltsam zusammen. Nahezu jede Umwandlungsreaktion von Aminosäuren benötigt Pyridoxal-Phosphat (darunter Decarboxylierungen, Transaminierungen, Dehydratisierungen u.a.). Eine besondere Bedeutung hat Vitamin B6 in der Synthese von Nervenbotenstoffen, der Reizübertragung und ein funktionierendes Nervensystem. Auch das Immunsystem benötigt zum Funktionieren Vitamin B6. Ebenfalls spielt es eine tragende Rolle bei allen Wachstumsprozessen, der Fettverdauung, der Blutbildung und der Homocystein-Kontrolle. Die Vitamin-Speicher im Körper sind mit 150 mg gering, was eine regelmäßige Zufuhr an Vitamin B6 zur Vermeidung von Mangelerscheinungen nötig macht. Immun- und Nervensystem gehören zu den ersten Systemen, die bei einem Vitamin B6-Mangel in Mitleidenschaft gezogen werden.

Funktionen und Anwendungsbereiche

Funktionen
Das Aufgabengebiet von Vitamin B6 ist wie beschrieben weitläufig. Zu den Hauptaufgaben zählen u.a.:
• Bildung der Neurotransmitter (Nervenbotenstoffe)
• Bildung des „Schlafhormons“ Melatonin
• Synthese von Proteinen
• Bildung von Niacin
• Synthese des Bindegewebes
• Blutzuckerkontrolle
• Fettstoffwechsel
• Immunabwehr
• Bildung von Hämoglobin (rote Blutkörperchen)

Anwendungsbereiche
• Vitamin B6-Mangel
• Herz-Kreislauf-Erkrankungen, Arteriosklerose und Homocysteinämie
• Diabetes mellitus
• Schlafstörungen
• Depression, Störungen des Neurotransmitter-Stoffwechsels
• Prämenstruelles Syndrom (PMS)
• Anämie (Blutarmut)
• Schwangerschaft
• Krämpfe
• Übelkeit
• Karpaltunnelsyndrom
• Entzündungen der Mundschleimhaut

Herz-Kreislauf-Erkrankungen, Arteriosklerose und Homocysteinämie
Vitamin B6 hat mehrfache Bedeutung für den Schutz vor Herz-Kreislauf-Erkrankungen: Es entgiftet das gefäßschädigende Homocystein – ein Eiweißstoff, der im Zusammenhang mit einem erhöhten Risiko an Herzerkrankungen steht. Es vermindert die Verklumpung von Blutplättchen (Thrombozytenaggregation), senkt das schädliche LDL-Cholesterin und erhöht das positive HDL-Cholesterin.

Diabetes mellitus
Vitamin B6 kann die Kontrolle der Blutzuckerwerte unterstützen. Gleichzeitig können die bei Diabetikern häufig auftretenden neurologische Störungen gebessert werden.

Schlafstörungen

Vitamin B6 ist mit notwendig, um das (Schlaf-)Hormon Melatonin herzustellen. Pyridoxin-Mangel wird als eine häufige Ursache für Antriebslosigkeit und Schlafmangel angesehen.

Depression, Störungen des Neurotransmitter-Stoffwechsels
Vitamin B6 spielt eine wichtige Rolle bei der Bildung bestimmter Neurotransmitter und Gewebshormone wie Serotonin, Dopamin und Histamin im zentralen Nervensystem.

Prämenstruelles Syndrom (PMS)
Typische Symptome des Prämenstruellen Systems wie z.B. depressive und aggressive Stimmungsschwankungen, Empfindlichkeit der Brüste, Ödembildung können durch eine Vitamin B6-Supplementierung häufig gebessert werden.

Anämie (Blutarmut)
Pyridoxin kann bestimmte Formen der Blutarmut mildern.

Schwangerschaft
Vitamin B6 hilft, Übelkeit und Erbrechen während der frühen Schwangerschaft zu lindern.

Krämpfe
Pyridoxin besitzt eine krampflösende Wirksamkeit. Optimal zur Krampflösung ist der kombinierte Verzehr von Vitamin B6 und Magnesium.

Mangel und erhöhter Bedarf
Nach Folsäuremangel ist der Mangel an Vitamin B6 der häufigste B-Vitamin-Mangel.
Viele Faktoren können den Bedarf an Vitamin B6 erhöhen.

Häufigste Ursachen für Mangelversorgung
• Medikamente: Bei der Einnahme bestimmter Medikamente („Anti-Baby-Pille“, Antidepressiva) steigt der Bedarf an Vitamin B6.
• einseitige Ernährung
• eiweißhaltige Ernährung: Der Bedarf an Vitamin B6 erhöht sich mit der Zufuhr an Nahrungseiweiß (da bei der Eiweiß-Verstoffwechslung benötigt!).
• Schwangerschaft und Stillzeit
• Prämenstruelles Syndrom (PMS)
• Alter
• Gefäßerkrankungen (z.B. erhöhte Cholesterinwerte, Arteriosklerose)
• Rauchen
• chronischer Alkoholkonsum
• Gefäßerkrankungen (z.B. Arteriosklerose)
• angeborene Stoffwechselstörungen (z.B. Homocysteinurie)
• schwere Leber- und Nierenkrankheiten

Mangelerscheinungen
Die Anzeichen und damit Warnsignale eines Pyridoxin-Mangels sind:
• Muskelschwäche
• Nervosität, Reizbarkeit
• Depressionen
• Konzentrationsstörungen
• Müdigkeit, Niedergeschlagenheit
• Koordinationsstörungen
• eine gestörte Funktion des Nervensystem
• erhöhte Anfälligkeit für Infekte
• rissige, wunde Mundwinkel, Hautprobleme
• Prämenstruelles Syndrom (PMS)

Zufuhrempfehlung und Einnahmehinweise

Zufuhrempfehlung
Zur allgemeinen Prävention werden täglich 10 bis 30 mg Vitamin B6 empfohlen.

Gegenanzeigen
Bei behandlungsbedürftigen Erkrankungen, der Einnahme von Medikamenten und in der Schwangerschaft und Stillzeit ist mit dem behandelnden Arzt Rücksprache zu halten.

Einnahmehinweise

Zur Unterstützung des Nervensystems ist die kombinierte Ergänzung von Vitamin B6 mit den Vitaminen B1, B2 und Pantothensäure empfehlenswert.

Literaturquellen

1. Bell I., Edman J., Morrow F., et al.: Brief communication: Vitamin B1, B2, and B6 augmentation of tricyclic antidepressant treatment in geriatric depression with cognitive dysfunction. J Am Coll Nutr . 1992;11(2):159-163.
2. Bendich A.: The potential for dietary supplements to reduce premenstrual syndrome (PMS) symptoms. J Am Coll Nutr . 2000;19(1):3-12.
3. Bhagavan HN, Brin M.: Drug-vitamin B6 interaction. Curr Concepts iNutr. 1983;12:.
4. Boushey CJ, Beresford SA, Omenn GS, Motulsky AG.: A quantitative assessment of plasma homocysteine as a risk factor for vascular disease. JAMA . 1995;274:1049-1057.
5. Brush MG, Bennett T, Hansen K.: Pyridoxine in the treatment of premenstrual syndrome: a retrospective survey in 630 patients. Br J Clin Pract . 1998;42:448–452.
6. Bunker VW. The role of nutrition in osteoporosis. Br J Biomed Sci . 1994;51(3):228-240.
7. Burgersteins Handbuch Nährstoffe – Prävention und Therapie,11. Aufl., S. 130ff. (Karl F. Haug Verlag, Hüthig GmbH, Heidelberg 2007)
8. Diegoli M., da Fonseca AM, Diegoli CA, Pinoltti J.: A double-blind trial of four medications to treat severe premenstrual syndrome. Int J Gynaecol Obstet . 1998;62:63–67.
9. Ebadi M, Gessert CF, Al Sayegh A.: Drug-pyridoxal phosphate interactions. Q Rev Drug Metab Drug Interac . 1982;4(4):289-331.
10. Eikelboom JW, Lonn E, Genest J, Hankey G, Yusuf S.: Homocyst(e)ine and cardiovascular disease: a critical review of the epidemiologic evidence. Ann Intern Med . 1999;131:363-375.
11. Fabian CJ, Molina R, Slavik M, Dahlberg S, Giri S, Stephens R.: Pyridoxine therapy for palmar-plantar erythrodysesthesia associated with continuous 5-fluorouracil infusion. Invest New Drugs . 1990;8(1):57-63.
12. Frisco S, Jacques PF, Wilson PW, Rosenberg IH, Selhub J.: Low circulating vitamin B(6) is associated with elevation of the inflammation marker C-reactive protein independently of plasma homocysteine levels. Circulation . 2001;103(23):2788-2791.
13. Fugh-Berman A, Cott JM.: Dietary supplements and natural products as psychotherapeutic agents. Psychosom Med. 1999;61:712-728.
14. Heller CA, Friedman PA.: Pyridoxine deficiency and peripheral neuropathy associated with long-term phenelzine therapy. Am J Med . 1983;75(5):887-888.
15. Hines Burnham, et al.: Drug Facts and Comparisons. St. Louis, MO: Facts and Comparisons ; 2000:18.
16. Jewell D, Young G.: Interventions for nausea and vomiting in early pregnancy (Cochrane Review). Cochrane Database Syst Rev. 2002;(1):CD000145.
17. Kelly GS. : Nutritional and botanical interventions to assist with the adaptation to stress. [Review]. Altern Med Rev . 1999 Aug;4(4):249-265.
18. Kidd P.: Attention deficit / hyperactivity disorder (ADHD) in children: rationale for its integrative management. Altern Med Rev . 2000;5(5):402-428.
19. Lerner V, Kaptsan A, Miodownik C, Kotler M.: Vitamin B6 in treatment of tardive dyskinesia: a preliminary case series study. Clin Neuropharm . 1999;22(4):241-243.
20. Lobo A, Naso A, Arheart K, et al.: Reduction of homocysteine levels in coronary artery disease by low-dose folic acid combined with levels of vitamins B6 and B12. Am J Cardiol. 1999;83:821–825.
21. Malinow MR, Bostom AG, Krauss RM.: Homocyst(e)ine, diet, and cardiovascular disease. A statement for healthcare professionals from the nutrition committee, American Heart Association. Circulation . 1999;99:178-182.
22. Morselli B, Neuenschwander B, Perrelet R, Lippunter K.: Osteoporosis diet [in German]. Ther Umsch. 2000;57(3):152-160.
23. Murphy PA.: Alternative therapies for nausea and vomiting of pregnancy. Obstet Gynecol. 1998;91:149-155.
24. Omray A.: Evaluation of pharmacokinetic parameters of tetracylcine hydrochloride upon oral administration with vitamin C and vitamin B complex. Hindustan Antibiot Bull . 1981;23(VI):33-37.
25. Passariello N et al.: Effects of pyridoxine alpha-ketoglutarate on blood glucose and lactate in type I and II diabetics. Int J Clin Pharmacol Ther Toxicol. 1983;21(5):252-256.
26. Rall LC, Meydani SN.: Vitamin B6 and immune competence. Nutr Rev . 1993;51(8):217-225
27. Rimm EB, Willett WC, Hu FB, et al.: Folate and vitamin B6 from diet and supplements in relation to risk of coronary heart disease among women. JAMA . 1998;279:359-364.
28. Rock CL, Vasantharajan S.: Vitamin status of eating disorder patients: Relationship to clinical indices and effect of treatment. Int J Eating Disord . 1995;18:257-262.
29. Robinson K, Arheart K, Refsum H, et al.: Low circulating folate and vitamin B6 concentrations. Risk factors for stroke, peripheral vascular disease, and coronary artery disease. Circulation . 1998;97:437-443.
30. Schnyder G.: Decreased rate of coronary restenosis after lowering of plasma homocysteine levels. N Eng J Med. 2001;345(22):1593-1600.
31. Shimizu T, Maeda S, Arakawa H, et al.: Relation between theophylline and circulating vitamin levels in children with asthma. Pharmacol. 1996;53:384-389.
32. Shor-Posner G, Feaster D, Blaney NT.:Impact of vitamin B6 status on psychological distress in a longitudinal study of HIV-1 infection. Int J Psychiatry Med. 1994;24(3):209-222
33. Shumann K.: Interactions between drugs and vitamins in advanced age. Int J Vit Nutr Res. 1999;69(3):173-178.
34. Vail DM, Chun R, Thamm DH, Garrett LD, Cooley AJ, Obradovich JE.: Efficacy of pyridoxine to ameliorate the cutaneous toxicity associated with doxorubicin containing pegylated (Stealth) liposomes: a randomized, double-blind clinical trial using a canine model. Clin Cancer Res. 1998;4(6):1567-1571.
35. Vermeulen EGJ, Stehouwer CDA, Twisk JWR, et al.: Effect of homocysteine-lowering treatment with folic acid plus vitamin B6 on progression of subclinical atherosclerosis: a randomised, placebo-controlled trial. Lancet . 2000;355:517-522.
36. Vidrio H.: Interaction with pyridoxal as a possible mechanism of hydralazine hypotension. J Cardiovasc Pharmacol . 1990;15(1):150-156.
37. Weber P.: The role of vitamins in the prevention of osteoporosis – a brief status report. International Journal of Vitaminology and Nutrition Research . 1999;69(3):194-197.
38. Wyatt KM, Dimmock PW, Jones PW, Shaughn O’Brien PM.: Efficacy of vitamin B6 in the treatment of premenstrual syndrome: a systematic review. BMJ. 1999;318(7195):1375-1381.
39. Chittumma P, Kaewkiattikun K, Wiriyasiriwach B.: Comparison of the effectiveness of ginger and vitamin B6 for treatment of nausea and vomiting in early pregnancy: a randomized double-blind controlled trial. J Med Assoc Thai 2007 Jan;90(1):15-20.
40. Clarke R, Armitage J.: Vitamin supplements and cardiovascular risk: review of the randomized trials of homocysteine-lowering vitamin supplements. Semin Thromb Hemost 2000;26(3):341-348.
41. Findling RL, Maxwell K, Scotese-Wojtila L, et al.: High-dose pyridoxine and magnesium administration in children with autistic disorder: an absence of salutary effects in a double-blind, placebo-controlled study. J Autism Dev Disord 1997;27(4):467-478.
42. Leeda M, Riyazi N, de Vries JI, et al.: Effects of folic acid and vitamin B6 supplementation on women with hyperhomocysteinemia and a history of preeclampsia or fetal growth restriction. Am J Obstet Gynecol 1998;179(1):135-139.
43. Lerner V, Miodownik C, Kaptsan A, et al.: Vitamin B6 treatment for tardive dyskinesia: a randomized, double-blind, placebo-controlled, crossover study. J Clin Psychiatry 2007 Nov;68(11):1648-54.
44. Lerner V, Bergman J, Statsenko N, et al.: Vitamin B6 treatment in acute neuroleptic-induced akathisia: a randomized, double-blind, placebo-controlled study. J Clin Psychiatry 2004;65(11):1550-1554.
45. Miodownik C, Lerner V, Statsenko N, et al.: Vitamin B6 versus mianserin and placebo in acute neuroleptic-induced akathisia: a randomized, double-blind, controlled study. Clin Neuropharmacol 2006 Mar-Apr;29(2):68-72.
46. Miodownik C, Lerner V, Vishne T, et al.: High-dose vitamin B6 decreases homocysteine serum levels in patients with schizophrenia and schizoaffective disorders: a preliminary study. Clin Neuropharmacol 2007 Jan-Feb;30(1):13-7.
47. Nye C, Brice A.: Combined vitamin B6-magnesium treatment in autism spectrum disorder. Cochrane Database Syst Rev. 2005 Oct 19;(4):CD003497.
48. Rimm EB, Willett WC, Hu FB, et al.: Folate and vitamin B6 from diet and supplements in relation to risk of coronary heart disease among women. JAMA 2-4-1998;279(5):359-364.
49. Sahakian V, Rouse D, Sipes S, Rose N, et al.: Vitamin B6 is effective therapy for nausea and vomiting of pregnancy: a randomized, double-blind placebo-controlled study. Obstet Gynecol 1991;78(1):33-36.
50. Schnyder G, Roffi M, Flammer Y, et al.: Effect of homocysteine-lowering therapy with folic acid, vitamin B12, and vitamin B6 on clinical outcome after percutaneous coronary intervention: the Swiss Heart study: a randomized controlled trial. JAMA 8-28-2002;288(8):973-979.
51. Thaver D, Saeed MA, Bhutta ZA.: Pyridoxine (vitamin B6) supplementation in pregnancy. Cochrane Database Syst Rev 2006 Apr 19;(2):CD000179.
52. Woodside JV, Yarnell JW, McMaster D, et al.: Effect of B-group vitamins and antioxidant vitamins on hyperhomocysteinemia: a double-blind, randomized, factorial-design, controlled trial. Am J Clin Nutr 1998;67(5):858-866.
53. Wyatt KM, Dimmock PW, Jones PW, et al.: Efficacy of vitamin B-6 in the treatment of premenstrual syndrome: systematic review. BMJ 5-22-1999;318(7195):1375-1381.
54. Chittumma P, Kaewkiattikun K, Wiriyasiriwach B.: Comparison of the effectiveness of ginger and vitamin B6 for treatment of nausea and vomiting in early pregnancy: a randomized double-blind controlled trial. J Med Assoc Thai 2007 Jan;90(1):15-20.
55. Clarke R, Armitage J.: Vitamin supplements and cardiovascular risk: review of the randomized trials of homocysteine-lowering vitamin supplements. Semin.Thromb.Hemost 2000;26(3):341-348.
56. Findling RL, Maxwell K, Scotese-Wojtila L, et al.: High-dose pyridoxine and magnesium administration in children with autistic disorder: an absence of salutary effects in a double-blind, placebo-controlled study. J Autism Dev Disord 1997;27(4):467-478.
57. Leeda M, Riyazi N, de Vries JI, et al.: Effects of folic acid and vitamin B6 supplementation on women with hyperhomocysteinemia and a history of preeclampsia or fetal growth restriction. Am J Obstet Gynecol 1998;179(1):135-139.
58. Lerner V, Miodownik C, Kaptsan A, et al.: Vitamin B6 treatment for tardive dyskinesia: a randomized, double-blind, placebo-controlled, crossover study. J Clin Psychiatry 2007 Nov;68(11):1648-54.
59. Lerner V, Bergman J, Statsenko N, et al.: Vitamin B6 treatment in acute neuroleptic-induced akathisia: a randomized, double-blind, placebo-controlled study. J Clin Psychiatry 2004;65(11):1550-1554.
60. Miodownik C, Lerner V, Statsenko N, et al.: Vitamin B6 versus mianserin and placebo in acute neuroleptic-induced akathisia: a randomized, double-blind, controlled study. Clin Neuropharmacol 2006 Mar-Apr;29(2):68-72.
61. Miodownik C, Lerner V, Vishne T, et al.: High-dose vitamin B6 decreases homocysteine serum levels in patients with schizophrenia and schizoaffective disorders: a preliminary study. Clin Neuropharmacol 2007 Jan-Feb;30(1):13-7.
62. Nye C, Brice A.: Combined vitamin B6-magnesium treatment in autism spectrum disorder. Cochrane Database Syst Rev. 2005 Oct 19;(4):CD003497.
63. Rimm EB, Willett WC, Hu FB, et al.: Folate and vitamin B6 from diet and supplements in relation to risk of coronary heart disease among women. JAMA 2-4-1998;279(5):359-364.
64. Sahakian V, Rouse D, Sipes S, Rose N, et al.: Vitamin B6 is effective therapy for nausea and vomiting of pregnancy: a randomized, double-blind placebo-controlled study. Obstet Gynecol 1991;78(1):33-36.
65. Schnyder G, Roffi M, Flammer Y, et al.: Effect of homocysteine-lowering therapy with folic acid, vitamin B12, and vitamin B6 on clinical outcome after percutaneous coronary intervention: the Swiss Heart study: a randomized controlled trial. JAMA 8-28-2002;288(8):973-979.
66. Thaver D, Saeed MA, Bhutta ZA.: Pyridoxine (vitamin B6) supplementation in pregnancy. Cochrane Database Syst Rev 2006 Apr 19;(2):CD000179.
67. Woodside JV, Yarnell JW, McMaster D, et al.: Effect of B-group vitamins and antioxidant vitamins on hyperhomocysteinemia: a double-blind, randomized, factorial-design, controlled trial. Am J Clin Nutr 1998;67(5):858-866.
68. Wyatt KM, Dimmock PW, Jones PW, et al.: Efficacy of vitamin B-6 in the treatment of premenstrual syndrome: systematic review. BMJ 5-22-1999;318(7195):1375-1381.

 

Weiterführende Quellen:

Wikipedia-Eintrag zu Vitamin B6

Pyridoxin-Artikel auf Vitaminwiki.net

 

Taurin

Taurin steigert die Aktivität des Herzmuskels, weshalb es bei Herzmuskel-Erkrankungen eine positive Wirkung aufweist

Beschreibung

Taurin ist eine der am meisten vorkommenden Aminosäuren in unserem Körper. Im Gegensatz zu anderen Aminosäuren dient Taurin nicht zum Aufbau von Körpereiweiß, sondern erfüllt spezifische Aufgaben im Nervensystem und Gehirn, in der Netzhaut der Augen, im Herzmuskel und den Zellwänden. Die größten Mengen an Taurin befinden sich daher in diesen Organen sowie den Blutzellen. Durch eine ausgeprägt antioxidative Wirksamkeit schützt Taurin die Zellmembranen und im Besonderen die Netzhaut vor oxidativen Schäden, die durch Freie Radikale verursacht werden. Ebenfalls dient Taurin der Stabilisierung des Flüssigkeitshaushaltes in den Zellen und der Aufrechterhaltung des Immunsystems. Der Körper eines durchschnittlichen Erwachsenen mit einem Körpergewicht von 70 kg enthält etwa 70 g Taurin.
Therapeutisch wird Taurin neben der Netzhautdegeneration (AMD) vor allem bei Herz-Kreislauf-Erkrankungen, Leber- und Fettverdauungs-Störungen (fehlende Gallensäure) sowie bei Diabetes mellitus eingesetzt. Erniedrigte Taurinspiegel treten häufig in Verbindung mit Netzhautdegeneration, Wachstumsstörungen und Herzerkrankungen auf.

Funktionen und Anwendungsbereiche

Funktionen
• Stabilität der Zellmembranen
• Entwicklung des Nervensystems
• Antioxidative Wirksamkeit
• Bildung von Gallensäuren
• Entgiftung

Anwendungsbereiche

• Herz-Kreislauf-Erkrankungen
• Diabetes mellitus
• Altersbedingte Makula-Degeneration (AMD)
• Antioxidans
• Fettverdauungsstörungen
• Entgiftung
• Antioxidative Wirkung
• Alkoholabbau
• Lungenerkrankungen
• Nierenerkrankungen

Herz-Kreislauf-Erkrankungen
Für die Funktion von Herzmuskel und Blutgefäßen ist Taurin mehrfach wichtig: Es stimuliert den Einstrom und die Membranbindung von Calcium und unterstützt dadurch die Stabilisierung des Membranpotentials. Taurin wirkt positiv inotrop, d.h. es verstärkt die Kontraktionskraft des Herzmuskels und wird bei Herzmuskelschwäche eingesetzt.
Durch die antiarrhythmische Wirkung auf das Herz wird die Gefahr von Herzrhythmusstörungen gesenkt. Taurin wirkt zudem dem Verklumpen der Blutplättchen, also der Thrombozytenaggregation, entgegen. Da Taurin blutdrucksenkende, antientzündliche und antioxidative Eigenschaften besitzt, schützt es Blutgefäße und Herzmuskelzellen und steuert ebenfalls der Arteriosklerose-Entstehung entgegen.
Bei Herz-Kreislauf-Erkrankungen, einschließlich Bluthochdruck, ist eine Ergänzung von 500 bis 4.000 mg Taurin angezeigt.

Diabetes mellitus
Eine Ergänzung mit Taurin wirkt sich günstig auf die Prävention diabetischer Spätfolgen aus. Taurin schützt insbesondere vor Augen- und Nierenerkrankungen, die als typisch häufige Folgeerkrankungen bei Diabetikern auftreten.

Altersbedingte Makula-Degeneration (AMD)
Taurin reguliert den osmotischen Druck in der Zelle, was insbesondere für die Retina (Netzhaut) wichtig ist. Der osmotische Druck ist für die Ausbildung des Rezeptorpotenzials verantwortlich, das den Sehvorgang ermöglicht. Gleichzeitig werden die der Radikalbildung (Lipidoxidation) besonders stark ausgesetzten Netzhautzellen durch Taurin geschützt und Lipidoxidations-Prozesse gehemmt.
Taurin spielt für die Entwicklung der Retina eine zentrale Rolle und gilt in der Prophylaxe als wichtige Schutzsubstanz gegen Makula-Degeneration im Alter (AMD) und Katarakt (Grauer Star). Empirische Untersuchungen haben gezeigt, dass der ergänzende Verzehr von Taurin in Tagesdosen zwischen 500 und 2.000 mg der Entstehung einer beginnenden AMD entgegensteuern kann. Bei einer bereits vorliegenden Makula-Degeneration ist Taurin hochdosiert einzunehmen.

Antioxidans

Taurin ist ein wirksames Antioxidans, das die Zellmembranen und Gewebe vor oxidadiven Schäden insbesondere durch Lipidperoxidation (der in den Zellwänden eingelagerten Fettmoleküle) schützt.

Fettverdauungsstörungen

Taurin ist für die Bildung der Gallensalze (Gallensäuren der Leber) zuständig. Ein Taurinmangel hat eine Verdickung der Gallenflüssigkeit und im schlimmsten Fall Cholestasen (Gallenstauungen) zur Folge.

Entgiftung
Taurin kann Medikamentenwirkstoffe und toxische Substanzen in der Leber binden und entgiften, wodurch der Körper vor den schädlichen Wirkungen geschützt und die Leber entlastet wird.

Alkoholabbau
In ausreichender Menge erhöht Taurin die für den Alkoholabbau zuständige Enzymaktivität und mindert durch Alkohol hervorgerufene Leberschäden.

Gallensäure-Funktion, Fettverdauungsstörungen
Taurin wird in der Leber den Gallensäuren zugefügt, bevor diese in den Verdauungstrakt gelangen, sodass Taurin für deren Wirkung und die Fettresorption unerlässlich ist. Besonders bei Menschen, die wegen Gallenblasen-, Leber oder Bauchspeicheldrüsen-Erkrankungen an einer gestörten Fettresorption leiden, kann Taurin die Aufnahme von Fett (und fettlöslichen Vitaminen) verbessern.

Lungenerkrankungen

Eine Taurinverarmung des Lungegewebes kann zu Lungenentzündungen und zur Entstehung von Lungenödemen führen.

Nierenerkrankungen

Freie Radikale können die Membranen der Nierenkörperchen schädigen und dadurch die Entwicklung von Nierenkrankheiten begünstigen. Eine Ergänzung von Taurin wirkt dem entgegen und ist besonders in der Vorbeugung von diabetischen Spätfolgen wichtig.

Erhöhter Bedarf und Mangel

Häufigste Ursachen für erhöhten Bedarf
Die häufigsten Ursachen für einen erhöhten Bedarf an Taurin sind:
• Vegetarische Ernährung: Taurin kommt überwiegend in tierischen, nur wenig in pflanzlichen Lebensmitteln vor, weshalb die Taurin-Spiegel von Vegetariern oft sehr niedrig sind
• Einseitige Ernähung: Mangel an bestimmten Aminosäuren (Methionin, Cystein) und Vitamin B6
• Schwangerschaft, Wachstum
• Einnahme von Medikamenten
• gestörte Fettverdauung z.B. Gallenblasen- und Bauchspeicheldrüsen-Erkrankungen
• Arteriosklerose, erhöhter Blutdruck oder Risiko für Herz- und Gefäßkrankheiten
• chronisch-degenerative Erkrankungen
• chronische Leberfunktionsstörungen

Mangelsymptome
Ein Mangel an Taurin führt zu
• gestörter Immunfunktion
• erhöhter Entzündungsneigung
• erhöhter Gefahr für Netzhauterkrankungen (Makula-Degeneration, Grauer Star)
• erhöhter oxidativer Stress
• erhöhtes Risiko für Nieren- und Lungenerkrankungen
• Verdickung der Gallenflüssigkeit (Risiko für Gallenstauungen)

Zufuhrempfehlung
Eine alimentäre Ergänzung von Taurin erfolgt in Mengen zwischen 500 und 4.000 mg täglich.
Zur allgemeinen Prävention werden 1.000 mg Taurin empfohlen.
Bei beginnenden Augenerkrankungen, wie AMD oder Grauer Star, sowie Herz-Kreislauf-Erkrankungen sind hochdosierte Einnahmen von bis zu 4.000 mg üblich.

Gegenanzeigen
• Bei behandlungsbedürftigen Erkrankungen, der Einnahme von Medikamenten und in der Schwangerschaft und Stillzeit ist mit dem behandelnden Arzt Rücksprache zu halten.

Literaturquellen

1. Azuma J, Sawamura A, Awata N.: Usefulness of taurine in chronic congestive heart failure and its prospective application. Jpn Circ J. 1992;56:95-99.
2. Azuma J, Takihara K, Awata N, et al.: Beneficial effect of taurine on congestive heart failure induced by chronic aortic regurgitation in rabbits. Res Commun Chem Pathol Pharmacol. 1984;45:261-270.
3. Balakrishnan SD, Anuradha CV, Anitha Nandhini AT.: Taurine Modulates Antioxidant Potential and Controls Lipid Peroxidation in the Aorta of High Fructose-fed Rats. J Biochem Mol Biol Biophys 2002 Apr;6(2):129-33
4. Biasetti M, Dawson Jr R.: Effects of sulfur containing amino acids on iron and nitric oxide stimulated catecholamine oxidation. Amino Acids 2002;22(4):351-68.
5. Darling PB, Lepage G, Leroy C et al: Effect of taurine supplements on fat absorption in cystic fibrosis. Pediatr Res 1985; 19(6):578-582.
6. Dawson Jr R, Biasetti M, Messina S, Dominy J.: “The cytoprotective role of taurine in exercise-induced muscle injury.” Amino Acids 2002;22(4):309-24
7. Della Corte, L.; Taurine 4 : Taurine and Excitable Tissues; Advances in Experimental Medicine and Biology 483; Plenum Press; New York, (2000).
8. Franconi F, Bennardini F, Mattana A, et al.: Plasma and platelet taurine are reduced in subjects with insulin-dependent diabetes mellitus: Effects of taurine supplementation. Am J Clin Nutr. 1995;61:1115-1119.
9. Fujita, T., Sato, Y.: Hypotensive effect of taurine. Possible involvement of the sympathetic nervous system and endogenous opiates. J Clin Invest 82(3): 993-97. September 1988.
10. Foos TM, Wu JY.: “The role of taurine in the central nervous system and the modulation of intracellular calcium homeostasis.” Neurochem Res 2002 Feb;27(1-2):21-6.
11. Fukuyama Y, Ochiai Y.: Therapeutic trial by taurine for intractable childhood epilepsies. Brain Dev. 1982;4:63-69.
12. Gaby, A.R., Wright, J.V. “Nutritional factors in degenerative eye disorders: Cataract and macular degeneration.” J Adv Med 6(1): 27-4O, Spring 1993.
13. Gröber, U.: Mikronährstoffe. Beratungsempfehlungen für die Praxis. Stuttgart: Wissenschaftliche Verlagsgesellschaft mbH Stuttgart, (2006).
14. Hayes, K.C., Carey, R.E., et al. : Retinal degeneration associated with taurine deficiency in the cat Science l88(4191): 949-51, May 30, 1975.
15. Huxtable, R.: Taurine 2: basic and clinical aspects; Advances in Experimental. Medicine and Biology 403; Plenum Press; New York, (1996).
16. Huxtable R.: Taurine 2: basic and clinical aspects; Advances in Experimental Medicine and Biology 403; Plenum Press; New York, (1996).
17. Huxtable R.: Schaffer, S.; Taurine 3 : Cellular and Regulatiory Mechanisms; Advances in Experimental Medicine and Biology 442; Plenum Press; New York, (1998).
18. Huxtable R.: The Biology of Taurine; Advances in Experimental Medicine and Biology 217; Plenum Press; New York. (1987).
19. Iwata H.: Lombardini, J.; Taurine and the Heart; Kluwer Academic Publishers, London, (1989).
20. Lombardini J.: Schaffer, S.: Taurine – Nutritional value and mechanisms of action; Advances in Experimental Medicine and Biology 315; Plenum Press; New York, (1992).
21. Nakanishi K.: Recent bioorganic studies on rhodopsin and visual transduction, Chem. Pharm. Bull. 48, 1399 – 1409 (2000).
22. Matsuyama Y, Morita T, Higuchi M, et al.: The effect of taurine administration on patients with acute hepatitis. Prog Clin Biol Res. 1983;125:461-468.
23. Marchesi GF, Quattrini A, Scarpino O, et al.: Therapeutic effects of taurine in epilepsy: a clinical and polyphysiographic study [in Italian; English abstract]. Riv Patol Nerv Ment. 1975;96:166-184.
24. Matsuyama Y, Morita T, Higuchi M, et al.: The effect of taurine administration on patients with acute hepatitis. Prog Clin Biol Res. 1983;125:461-468.
25. Matsuzaki Y, Miyazaki T, Miyakawa S, Bouscarel B, Ikegami T, Tanaka N.: Decreased taurine concentration in skeletal muscles after exercise for various durations. Med Sci Sports Exerc 2002 May;34(5):793
26. Murakami S, Kondo Y, Sakurai T, Kitajima H, Nagate.: Taurine suppresses development of atherosclerosis in Watanabe heritable hyperlipidemic (WHHL) rabbits.” Atherosclerosis 2002 Jul;163(1):79-87
27. Oja, S.: Taurine; Progress in clinical and biological research 179; Liss, New York, (1985).
28. Podda M, Ghezzi C, Battezzati PM, et al.: Effects of ursodeoxycholic acid and taurine on serum liver enzymes and bile acids in chronic hepatitis. Gastroenterology. 1990;98:1044-1050.
29. Podda M, Ghezzi C, Battezzati PM, et al.: Effects of ursodeoxycholic acid and taurine on serum liver enzymes and bile acids in chronic hepatitis. Gastroenterology. 1990;98:1044-1050.
30. Pogan K.: Gewebespezifische Verwertung von Taurinkonjugaten, Köster, Berlin, (1998).
31. Pasantes-Morales H.: Taurine: Funcional Neurochemistry, Physiology and Cardiology; Progress in Clinical and Biological Research 351; Wiley – Liss, New York, (1990).
32. Scientific Comittee on Food: Opinion on Caffeine, Taurine and D-Glucurono-?-lacton as constituents of so-called „energy“ drinks; 21.01. (1999).
33. Steglich W., Fugmann B. Römp P.: Naturstoffchemie; Thieme; Stuttgart, (1997).
34. Sicuteri F, Fanciullacci M, Franchi G et al: Taurine as a therapeutic agent in vascular pain. Clin Med 1970; 77:21-32.
35. Shao A, Hathcock JN. Risk assessment for the amino acids taurine, l-glutamine and l-arginine. Regul Toxicol Pharmacol. 2008 Jan 26.

 

Weiterführende Quellen:

Wikipedia-Eintrag zu Taurin

Taurin-Artikel auf Vitaminwiki.net