Archiv der Kategorie: Arthritis

Selen

Selen schützt die DNA (Erbsubstanz) der Zellen vor oxidativen Schäden

Beschreibung

Selen zählt zu den lebensnotwendigen (essentiellen) Spurenelementen und kommt in allen Körperzellen und -flüssigkeiten vor. Selen schützt die Erbsubstanz (DNA) sowie die Zellen vor oxidativen Stress und der Schädigung durch freie Radikale. Zudem fungiert Selen im Körper als Bestandteil von Enzymen, die für die Bildung der Schilddrüsenhormone benötigt werden, stärkt das Immunsystem und bindet Umweltschadstoffe.
Selen steht wie kein anderes Spurenelement, im Besonderen in der Krebsforschung, in der
Prophylaxe und der Komplementärtherapie, im wissenschaftlichen Fokus.

Der Selen-Bestand im Körper beträgt etwa 3 bis 15 Milligramm. Die höchsten Gehalte weisen Leber, Nieren, Milz, Gehirn, Keimdrüsen, insbesondere Testes (Hoden), Thrombozyten (Blutplättchen), Schilddrüse, Herz, Prostata und Muskeln auf.

Funktionen und Wirkungen

Funktionen
• Antioxidans (als Glutathion-Peroxidase)
• Immunmodulation und Stärkung des Immunsystems
• Aktivierung des Schilddrüsenhormons
• Schwermetallbindung
• Fortpflanzung

Wirkungen

Antioxidans
Die Hauptfunktion von Selen ist es, die Zellen vor schädlichen Belastungen zu bewahren. Selen schützt die Zellen und Chromosomen vor aggressiven Formen des Sauerstoffs (Peroxide) und vor freien Radikalen sowie vor Umwelt- wie auch Strahlenbelastungen. Selen ist essentieller Bestandteil des Schlüsselenzyms der körpereigenen Abwehr der Glutathion-Peroxidase. Dieses Enzym ist ein Zellschutzfaktor gegen aggressive Sauerstoffradikale, die durch äußere Einflüsse wie z.B. Umweltgifte, UV-Strahlungen, Rauchen sowie im normalen Stoffwechsel jedes Menschen gebildet werden. Glutathion-Peroxidase kann mit Hilfe von Selen Peroxide unschädlich machen.
Selen kann ebenfalls vor Karzinogenen, z.B. Nitrosaminen, Benzpyren und Aflatoxinen, schützen. Selen vermindert damit die frühzeitige Alterung der Zellen und stärkt das Immunsystem.

Immunstimulation

Selen ist für die Feinregulierung im Zusammenspiel der Immunzellen unersetzlich. Es besitzt als Stimulator der humoralen und zellulären Abwehr zahlreiche immunmodulierende Effekte. Selen stimuliert die Antikörperproduktion, insbesondere die Immunglobuline (IgG), den Tumor-Nekrose-Faktor (TNF) und erhöht die Zelltoxität der natürlichen Killerzellen und T-Lymphozyten (Immunzellen).
Ein Mangel an Selen, infolge einer unzureichenden Zufuhr, kann zu Beeinträchtigunen der immunologischen Abwehr des Körpers führen. Selendefizite wirken sich negativ auf die Aktivität der Glutathionsperoxidasen aus. Hierdurch kommt es zu einer verstärkten Radikalenbildung und gesteigerten Ansammlung von Lipidperoxiden, was mit einer erhöhten Bildung von entzündungsfördernden, immunschwächenden Botenstoffen (Prostaglandinen) einhergeht.

Aktivierung des Schilddrüsenhormons

Selen ist notwendig für den reibungslosen Schilddrüsenhormonstoffwechsel, genauer der Bildung des aktiven Schilddrüsenhormons Trijodthronin (T3) durch die Funktion des Enzyms Typ-I-Jodthyronin-5-Dejodase. Dieses Enzym ist für die Umwandlung und Aktivierung der Schilddrüsenhormone von Bedeutung. Ein Selenmangel führt aus diesem Grund zu einer Schilddrüsenunterfunktion.

Schwermetallbindung

Das Spurenelement Selen ist in der Lage, den Körper vor schädigenden Schwermetallen zu schützen. Selen geht mit Schwermetallen wie Quecksilber, Blei und Cadmium einen schwerlöslichen inaktiven Selenid-Komplex ein, und macht diese dadurch untoxisch.
Vor allem Leberzellen werden durch das Spurenelement vor diesen Toxinen geschützt
Bei zu hoher Belastung mit Schwermetallen benötigt der Körper mehr Selen, da es für die Schwermetallbindung verbraucht wird und nicht mehr ausreichend für seine weiteren Funktionen vorhanden ist.
Selen wird auch als therapeutischen Gegenmittel bei erhöhten Schwermetallbelastungen eingesetzt.

Fortpflanzung

Darüber hinaus ist Selen für die Zeugungsfähigkeit, genauer, die Entwicklung der Spermazellen (Spermatozyten) wichtig.

Komplementäre Therapie mit Selen
Komplementärtherapeutisch wird Selen bei Krebs, Herzkrankheiten, rheumatisch-arthritischen Erkrankungen, Fertilitätsstörungen, Immunschwächen und erhöhten Schwermetallbelastungen eingesetzt.

Selenversorgung und Bedarf

Viele Regionen Europas, darunter Deutschland sowie die Nachbarländer Österreich und Schweiz gehören aufgrund der niedrigen Selengehalte der Böden und den folglich geringen Selenkonzentrationen in den Lebensmitteln zu den Selenmangelgebieten. In der Folge sind die Selenzufuhren aus der Nahrung in Mitteleuropa zu gering. Die durchschnittliche mit der Nahrung täglich zugeführte Menge in Deutschland liegt zwischen 35 und 40 µg und ist nach der einschlägigen Meinung von Experten viel zu niedrig um den Bedarf zu decken.

Mehrbedarf
Risikogruppen für einen erhöhten Bedarf an Selen
– Senioren
– in der Schwangerschaft und Stillzeit
– bei geschwächten Immunsystem
– bei erhöhten Schwermetallbelastungen z.B. durch Rauchen
– bei Magen-Darm-Erkrankungen (durch gestörte Selenaufnahme)
– bei Diabetes mellitus
– bei Herzinfarkt und anderen Herzerkrankungen, z.B. Arteriosklerose
– bei Krebserkrankungen
– bei rheumatischen Erkrankungen
– bei Leber- und Bauchspeicheldrüsen-Erkrankungen

Zufuhrempfehlung und Hinweise

Zufuhrempfehlung
In Gebieten mit selenarmen Böden, wie Deutschland, Schweiz und Österreich, werden tägliche, langfristige präventive Gaben von 100 bis 200 µ Selen, möglichst zu den Mahlzeiten, empfohlen.

Hinweis für die Selen-Ergänzung: Unterschiedliche Bioverfügbarkeiten
Bei einer Nahrungsergänzung mit Selen sind organische Selen-Verbindungen (Selenhefe) qualitativ höher zu bewerten als anorganische (z.B. Natriumselenit). Der Grund: Natriumselenit wird unter dem Einfluss von Vitamin C (Ascorbinsäure) und Zink zu so genanntem elementaren roten Selen reduziert, welches nicht mehr vom Körper aufgenommen werden kann. Aus diesem Grund werden organischen Formen aus Selenhefe bevorzugt. Selenhefe enthält Selen so, wie es auch in naturbelassenen Nahrungsmitteln zu finden ist, ausschließlich aus organischen Selenverbindungen, insbesondere Selenomethionin und Selenocystein, bestehend. Wissenschaftliche Untersuchungen zeigten, dass diese organischen Selenformen eine um 70 % bessere Bioverfügbarkeit aufweisen als anorganisches Selenit.

Gegenanzeigen
Als sicher und nebenwirkungsfrei gilt eine Langzeitdosierung von bis zu 250 µg Selen (Tolerabel Upper Intake Level: 300 µg).


Literaturquellen

1. Borner J, Zimmermann T, Albrecht S, et al.: Selenium administration in severe inflammatory surgical diseases and burns in childhood. Med Klin;92 Suppl 3:17-19. (1997).
2. Clark LC, Dalkin B, Krongrad A, et al.: Decreased incidence of prostate cancer with selenium supplementation: results of a double-blind cancer prevention trial. Br J Urol;81(5):730-734. (1998).
3. Darlow BA, Winterbourn CC, Inder TE, et al.: The effect of selenium supplementation on outcome in very low birth weight infants: a randomized controlled trial. The New Zealand Neonatal Study Group. J Pediatr;136(4):473-480. (2000).
4. Duffield-Lillico AJ, Slate EH, Reid ME, et al.: Selenium supplementation and secondary prevention of nonmelanoma skin cancer in a randomized trial. J Natl Cancer Inst95(19):1477-1481. (2003).
5. Drobner, C., Anke, M., Thomas, G.: Selenversorgung und Selenbilanz Erwachsener in Deutschland. Anke, M. et al., H. Schubert, Leipzig (1996)
6. Etminan M, FitzGerald JM, Gleave M, et al.: Intake of selenium in the prevention of prostate cancer: a systematic review and meta-analysis.Cancer Causes Control. 2005 Nov;16(9):1125-31. (2005).
7. Fakih M, Cao S, Durrani FA, Rustum YM.: Selenium protects against toxicity induced by anticancer drugs and augments antitumor activity: a highly selective, new, and novel approach for the treatment of solid tumors.Clin Colorectal Cancer.5(2):132-5. (2005).
8. Hull CA, Johnson SM. A double-blind comparative study of sodium sulfacetamide lotion 10% versus selenium sulfide lotion 2.5% in the treatment of pityriasis (tinea) versicolor. Cutis;73(6):425-429. (2004).
9. Karunasinghe N, Ferguson LR, Tuckey J, et al.: Hemolysate thioredoxin reductase and glutathione peroxidase activities correlate with serum selenium in a group of New Zealand men at high prostate cancer risk. J Nutr.136(8):2232-5. (2006).
10. Klein EA. Clinical models for testing chemopreventative agents in prostate cancer and overview of SELECT: the Selenium and Vitamin E Cancer Prevention Trial. Recent Results Cancer Res;163:212-225. (2003).
11. Naziroglu M, Karaoglu A, Aksoy AO.: Selenium and high dose vitamin E administration protects cisplatin-induced oxidative damage to renal, liver and lens tissues in rats. Toxicology.195(2-3):221-230. (2004).
12. Peretz A, Siderova V, Neve J.: Selenium supplementation in rheumatoid arthritis investigated in a double blind, placebo-controlled trial. Scand J Rheumatol 2001;30(4):208-212. (2001).
13. Rayman M, Thompson A, Warren-Perry M, et al.: Impact of selenium on mood and quality of life: a randomized, controlled trial.Biol Psychiatry. 15;59(2):147-54. (2006).
14. Stranges S, Marshall JR, Trevisan M, et al.: Effects of selenium supplementation on cardiovascular disease incidence and mortality: secondary analyses in a randomized clinical trial. Am J Epidemiol. 15;163(8):694-9. (2006).
15. Turker O, Kumanlioglu K, Karapolat I, et al.: Selenium treatment in autoimmune thyroiditis: 9-month follow-up with variable doses.J Endocrinol.190(1):151-6. (2006).
16. You WC, Brown LM, Zhang L, et al.: Randomized double-blind factorial trial of three treatments to reduce the prevalence of precancerous gastric lesions. J Natl Cancer Inst. (14):974-83. (1998).
17. Selenium, selenoproteins and human health: a review. Public Health Nutr. 4: 593-599 Burk R.F., Hill K.E., Motley A.K. (2003).
18. Selenoprotein metabolism and function: evidence for more than one function for selenoprotein P. J. Nutr. 133: 1517S-1520S (1993).
19. Deutsche Gesellschaft für Ernährung (DGE), Österreichische Gesellschaft für Ernährung (ÖGE), Schweizerische Gesellschaft für Ernährungsforschung (SGE), Schweizerische Vereinigung für Ernährung (SVE) Referenzwerte für die Nährstoffzufuhr. 1. Auflage 2000. Umschau Braus Verlag, Frankfurt am Main. (2000).
20. Kasper H. Ernährungsmedizin und Diätetik. 67-68 Urban & Fischer Verlag, 2004 Elsevier GmbH, München, Jena. (2004).
21. Leitzmann, C., Müller, C., Michel, P., Brehme, U., Hahn, A., Laube, H.: Ernährung in Prävention und Therapie. 75-77 2005 Hippokrates Verlag in MVS Medizinverlage Stuttgart GmbH & Co.KG. (2005).
22. Niestroj I.: Praxis der Orthomolekularen Medizin. 420-423 Hippokrates Verlag GmbH, Stuttgart. (2000).
23. Schmidt, Dr. med. E., Schmidt, N.: Leitfaden Mikronährstoffe. 292-301 Urban & Fischer Verlag; München. (2000).
24. Schrauzer G.N.: Selenomethionine: A review of its nutritional significance, metabolism and toxicity. J. Nutr. 130: 1653-1656(2000).
25. Sunde R.A.: Selenium. In: Present Knowledge in Nutrition. 8th ed. Bowman B.A., Russell R.M. (Eds.) ILSI Press, International Life Sciences Institute,Washington,DC. (2001).
26. Thomson Ch.D., Robinson M.F.,Butler J.A., Whanger P.D.: Long-term supplementation with selenate and selenomethionine: selenium and glutathione peroxidase ( EC 1.11.1,9) in blood components ofNew Zealand women. Br. J. Nutr. 69: 577-588. (1993).

 

Weiterführende Quellen:

Wikipedia-Eintrag zu Selen

Selen-Artikel auf Vitaminwiki.net

 

Grünlippmuschel

Grünlippmuschel (Perna canaliculus): Hochwertige Quelle für Aminozucker-Verbindungen (Glykosaminoglykane), die den Gelenkknorpel bilden

Beschreibung

Die neuseeländische Grünlippmuschel oder Grünschalmuschel (lat. perna canalicul) gehört zur Familie der Miesmuscheln. Grünlippmuschelpulver besitzt ausgezeichnete entzündungslindernde Eigenschaften und unterstützt die wichtige Funktion der Gelenkschmiere (Synovialflüssigkeit). Ihr Einsatz hat sich in der komplementären Behandlung von entzündlich-degenerativen Gelenkerkrankungen, wie Arthritis und Polyarthritis, neben der Gabe von Chondroitin und Glukosamin sehr bewährt.

Die Grünlippmuschel wird seit den sechziger Jahren des letzten Jahrhunderts in Neuseeland in dafür angelegten Aquakulturen gezüchtet.

Anwendungsbereiche und Wirkungen

Anwendungsbereich
Behandlung von Gelenkerkrankungen


Wirkungen

Grünlippmuschelpulver hat stark anti-inflammatorische Eigenschaften und hemmt Entzündungen des Bewegungsapparates und damit die Ursache schmerzhafter Gelenkbeschwerden bei Arthritis und Polyarthritis. Dies liegt in den enthaltenen Omega-3-Fettsäuren begründet. Sie hemmen die Bildung bestimmter Botenstoffe (Prostaglandine) aus Arachidonsäure und wirken so entzündlichen Prozessen entgegen, wie wissenschaftliche Studien zeigten.
Zudem enthält die Grünlippmuschel große Mengen an langkettigen Aminozucker-Verbindungen, die als Glykosaminoglykane (GAG) bezeichnet werden. Diese Verbindungen kommen im Knorpel und den Gelenken des Menschen vor und besitzen unentbehrliche Funktionen als Stütz-, Schutz- und Gleitsubstanzen. Glykosaminoglykane erhöhen die Viskosität der Gelenkschmiere (Synovialflüssigkeit), was zu einer besseren Versorgung des Knorpels mit essentiellen Nährstoffen führt. Die Gelenkschmiere kann dadurch ihre Funktion als Puffer wieder erfüllen, sodass die Knochenenden nicht mehr unmittelbar aneinander reiben.

Wirkstoffe

• Glykosaminoglykane (GAG): Aminozucker-Verbindungen, die in Knorpeln und Gelenken vorkommen und wichtige Funktionen als Stütz-, Schutz- und Gleitsubstanz haben.
• Omega-3-Fettsäuren (entzündungsmindernd)
• Vitamin B12
• Selen
• Eisen

Zufuhrempfehlung und Hinweise

Zufuhrempfehlung
Täglich werden 1000 bis 1200 mg Grünlippmuschelpulver empfohlen, am Besten auf mehrere Mahlzeiten verteilt.

Gegenanzeigen
Für Schwangere, Stillende sowie für Menschen mit Meeresfrüchte-Allergie ist die Grünlippmuschel nicht geeignet.

Kombi-Hinweis
Durch die kombinierte (gleichzeitige) Einnahme der Grünlippmuschel mit Vitamin E, Yucca (Schidigera) Extrakt und Ingwer können die Effekte der Glykosaminoglykane synergistisch verstärkt werden. Manche Nahrungsergänzungspräparate liefern bereits diese vorteilhafte Nährstoffkombination.
Effekte sind erst nach zwei- bis vierwöchiger (täglicher) Einnahme zu spüren.

Literaturquellen

1. Audeval B. Bouchacourt P. : Etude controle en double aveugle contra placebo de l’extrait de moule Pernacanaliculus dans les gonarthrose. Gaz Med Fr . 38:111–6. (1986).
2. Bui L., Pawlowski K., Bierer T.: A semi-moist treat containing green-lipped mussel (Perna canaliculus) can help to alleviate arthritic signs in dogs. FASEB J.;14:A748. (2000).
3. Bui L., Pawlowski K., Bierer T.: Reduction of arthritic signs in dogs fed a mainmeal dry diet containing green-lipped mussel (Perna canaliculus ). FASEB J.;14:A748. (2000).
4. Cho S., Jung Y., Seong S. et al.: Clinical efficacy and safety of Lyprinol, a patented extract from New Zealand green-lipped mussel (Perna canaliculus) in patients with osteoarthritis of the hip and knee: a multicenter 2-month clinical trial. Allerg Immunol . 35:212–6. (2003).
5. Caughey D., Grigor R., Caughey E., et al.: Perna canaliculus in the treatment of rheumatoid arthritis. Eur JRheumatol Inflamm. 6:197–200. (1983).
6. Cobb C., Ernst E.: Systematic review of a marine nutriceutical supplement in clinical trials for arthritis: the effectiveness of the New Zealand green-lipped mussel Perna canaliculus. Clin Rheumatol. (2005).
7. Emelyanov A., Fedoseev G., Krasnoschekova O., et al.: Treatment of asthma with lipid extract of New Zealand green-lipped mussel: a randomised clinical trial. Eur Respir J. 20:596–60. (2002).
8. Gibson R., Gibson S., Conway V., et al.: Perna canaliculus in the treatment of arthritis. Practitioner. 224:955–60. (1980).
9. Gibson R., Gibson S.: Green-lipped mussel extract in arthritis. Lancet ;1:439. (1981).
10. Gibson S., Gibson R.: The treatment of arthritis with a lipid extract of Perna canaliculus : a randomized trial. Comp Ther Med. 6:122–6. (1998).
11. Halpern G.: Anti-inflammatory effects of a stabilized lipid extract of Perna canaliculus (Lyprinol). AllergImmunol (Pairs). 32:272–8. (2000).
12. James M., Cleland L.: Dietary n-3 fatty acids and therapy for rheumatoid arthritis. Semin Arthritis Rheum. 27:85–97. (1997).
13. Larkin J., Capell H., Sturrock R.: Seatone in rheumatoid arthritis: a six-month placebo-controlled study. AnnRheum Dis.;44:199–201. (1985).
14. Rainsford K., Whitehouse M.: Gastroprotective and anti-inflammatory properties of green lipped mussel ( Pernacanaliculus ) preparation. Arzneimittelforschung;30:2128–32. (1980).

 

Weiterführende Quellen:

Wikipedia-Eintrag zu Grünlippmuschel

Grünlippmuschel-Artikel auf Vitaminwiki.net

 

Glucosamin und Chondroitin

Chondroitin und Glucosamin: fördern die Neubildung von Knorpelgewebe

Beschreibung

Glucosamin und Chondroitin sind natürliche Bestandteile des Gelenkknorpels. Als Grundssubstanzen dienen sie der ständigen Neubildung des Knorpels sowie der zähflüssigen Gelenkflüssigkeit (Gelenkschmiere, Synovia) und damit der Gleit- und Dämpfungsschichten des Bewegungsapparates. Glucosamin und Chondroitin fördern einerseits die Neubildung von Knorpelgewebe und hemmen andererseits Abbauprozesse der Chondrozyten (Knorpelzellen). Sie verbessern den Flüssigkeitsgehalt sowie die Nährstoffversorgung des Knorpels. Mediziner zählen Glucosamin und Chondroitin in der Therapie von degenerativen Gelenkerkrankungen zu den natürlichen Chondroprotectiva, den knorpeldegenerations-hemmenden Substanzen. Chondroitin und Glucosamin werden aus Schalentieren gewonnen und in der Behandlung degenerativer und entzündlicher Gelenkerkrankungen wie z.B. Arthrose und Arthritis zunehmend eingesetzt. Dabei fördern die beiden Knorpelsubstanzen einerseits den Wiederaufbau des Knorpelgewebes und haben gleichzeitig abschwellende, entzündungs- und schmerzlindernde Eigenschaften.
Die jeweils bioaktiven, also im Körper aktiven Formen, nennt man Chondroitinsulfat und Glucosaminsulfat.

Glucosamin
Glucosamin ist Hauptbaustein der so genannten Proteoglykane (genauer siehe unten), die aufgrund ihrer hohen Wasserbindekapazität als Gleitmittel in den Gelenken fungieren. Proteoglykane besitzen eine aufpolsternde Wirkung auf die Grundsubstanz des Knorpels. Glucosamin erhöht die Bildung von Proteoglykanen und Kollagen-Fasern und reguliert den Knorpel-Anabolismus (aufbauender Stoffwechselprozess). Hierdurch hilft Glucosamin dabei, abgenutzten Knorpel zu reparieren.

Chondroitin

Chondroitin ist ebenfalls ein essentieller Knorpelbestandteil. Chondroitin wirkt synergistisch mit Glucosamin. Es stimuliert die Knorpelbildung und verbessert die Elastizität und Belastbarkeit des Gelenkknorpels.

Funktionen und Anwendungsbereiche

Funktionen
Die Wirkmechanismen von Glucosamin und Chondroitin zusammengefasst sind:
• Aufbau und Schutz des Knorpelgewebes
• Verringerung knorpelabbauender Prozesse
• Steigerung der Viskosität der Gelenkflüssigkeit (Synovia, Synovial-Flüssigkeit)
• Gesteigerte Kollagen-, Proteoglycan- und Hyaluronsäure-Bildung durch die Knorpelzellen (Chondrozyten)
• Hemmung von kollagenabbauenden Enzymen
• Entzündungshemmung (anti-inflammatorische Wirkung)

Ausführlich

Der Gelenkknorpel gleicht einem Kissen mit Stoßdämpfereigenschaften, das aus einer Matrix aus Wasser, Kollagen-Fasern und so genannten Proteoglykanen, kurz PG, aufgebaut ist. Proteoglykane sind komplexe Zuckermoleküle, die die Zwischenräume ausfüllen in denen die Kollagen-Fasern eingebettet liegen. Aufgrund ihrer Fähigkeit, Wasser anzusammeln und zu speichern – ein Gramm kann 1,5 Liter Wasser binden – sind die Proteoglykane entscheidend für die Pufferwirkung des Gelenkknorpels verantwortlich. Glucosamin und Chondroitin sind für die Herstellung von Knorpelgewebe und der Gelenkschmiere erforderlich. Die Hauptwirkung von Glucosamin und Chondroitin ist die Bildung von Knorpelsubstanz, indem sie die Synthese von Stoffen stimulieren, die für die Knorpelregeneration benötigt werden.
Mit zunehmendem Alter verliert der Körper seine Fähigkeit, Glucosamin und Chondroitin herzustellen. Der Knorpel kann in der Folge nicht mehr ausreichend Wasser speichern und büßt große Teile seiner polsternden, stoßabsorbierende Wirkung ein. Das Knorpelgewebe wird dadurch immer schlechter ernährt und nur noch mangelhaft aufgebaut.
Glucosamin und Chondroitin sind als strukturgebende Bestandteil im Chitinkörper von Schalentieren vorhanden und werden mit der „normalen“ Ernährung so gut wie nicht aufgenommen.

Anwendungsbereiche
Die Supplementierung von Chondroitin und Glucosamin dient zur Therapie und Prävention degenerativer und entzündlicher Gelenkerkrankungen und Erkrankungen, bei denen ein gesteigerter Knorpelaufbau erforderlich ist wie:

• Arthritis, Arthrose
• Osteoarthritis
• Morbus Bechterew
• Sehnen- und Sehnenscheidenentzündung


Zufuhrempfehlung und Hinweise

Einnahme
• Die Zufuhr von hochdosiertem Glucosamin und Chondroitin sollte als regelmäßige Kur (mehrmals jährlich) über mehrere Monate erfolgen.
• Bei allen entzündlichen Gelenkerkrankungen empfiehlt sich die kombinierte Ergänzung von Chondroitin, Glucosamin und den Omega-3-Fettsäuren EPA und DHA zur Verminderung der Gelenkentzündung.

Zufuhrempfehlung
Als tägliche Dosis werden zwischen 1.000 und 1.500 mg Glucosaminsulfat und 500 bis 800 mg Chondroitinsulfat zu den Mahlzeiten empfohlen.

Gegenanzeigen

• Personen mit einer Schalentier-Allergie wird vor der Einnahme abgeraten.
• Diabetiker haben die Glucosamin-Ergänzung bei der Blutzuckerkontrolle zu beachten.
• Bei behandlungsbedürftigen Erkrankungen, der Einnahme von Medikamenten und in der Schwangerschaft und Stillzeit ist zudem mit dem behandelnden Arzt Rücksprache zu halten.


Literaturquellen

1. Bassleer C et al.: Stimulation of proteoglycan production by glucosamine sulfate in chondrocytes isolated from human osteoarthritic articular cartilege in vitro. Osteoarthritis Cartilage 1998 Nov;6(6):427-34.
2. Bourgeois P, Chales G, Dehais J, et al.: Efficacy and tolerability of chondroitin sulfate 1200 mg/day vs chondroitin sulfate 3 x 400 mg/day vs placebo. Osteoarthritis Cartilage . 1998;6(suppl A):25-30.
3. Brown KE, Leong K, Huang C, et al.: Gelatin/chondroitin 6-sulfate microspheres for the delivery of therapeutic proteins to the joint. Arthritis and Rheum. 1998;41(12):2185-2195.
4. Busci L, Poor G.: Efficacy and tolerability of oral chondroitin sulfate as a symptomatic slow-acting drug for osteoarthritis (SYSADOA) in the treatment of knee osteoarthritis. Osteoarthritis Cartilage. 1998;6(suppl A):31-36.
5. Chavez ML.: Glucosamine sulfate and chondroitin sulfates. Hosp Pharm . 1997;32(9):1275-1285.
6. Clegg DO, Reda DJ, Harris CL, et al.: Glucosamine, chondroitin sulfate, and the two in combination for painful knee osteoarthritis. N Engl J Med. 2006 Feb 23;354(8):
7. Das A, Hammond TA.: Efficacy of a combination of FCHG49 glucosamine hydrochloride, TRH122 low molecular weight sodium chondroitin sulfate and manganese ascorbate in the management of knee osteoarthritis. Osteoarthritis Cartilage . 2000;8(5):343-350.
8. Da Camara CC et al.: Glucosamine sulfate for osteoarthritis. Ann Pharmacother 1998 May;32(5):580-7.
9. Deal CL et al.: Nutraceuticals as therapeutic agents in osteoarthritis. The role of glucosamine, chondroitin sulfate, and collagen hydrolysate. Rheam Dis Clin North Am 1999 May;25(2):379-95.
10. Delafuente JC.: Glucosamine in the treatment of osteoarthritis. Rheum Dis Clin North Am 2000 Feb;26(1):1-11.
11. D’Ambrosio E, Casa B, Bompani R et al: Glucosamine sulfate: a controlled clinical investigation in arthrosis. Pharmatherapeutica 1981; 2: 504-508.
12. Deal CL, Moskowitz RW.: Nutraceuticals as therapeutic agents in osteoarthritis. The role of glucosamine, chondroitin sulfate, and collagen hydrolysate. Rheum Dis Clin North Am . 1999;25:379-395.
13. Gaby AR.: Natural treatments for osteoarthritis. Altern Med Rev . 1999;4(5):330-341.
14. Goedert MR, Jakes R, Spillantini MG, et al.: Assembly of microtubule-associated protein tau into Alzheimer-like filaments induced by sulphated glycosaminoglycans. Nature . 1996;383:550-553.
15. Houpt JB et al.: Effect of glucosamine hydrochloride in the treatment of pain of osteoarthritis of the knee. J Rheumatol 1999 Nov;26(11):2423-30.
16. Kelly GS.: The role of glucosamine sulfate and chondroitin sulfates in the treatment of degenerative joint disease. Alt Med Rev . 1998;3(1):27-39.
17. Leeb BF, Schweitzer H, Montag K, et al.: A metaanalysis of chondroitin sulfate in the treatment of osteoarthritis. J Rheumatol . 2000;27:205-211.
18. Lippiello L, Woodward J, Karpman R, et al.: In vivo chondroprotection and metabolic synergy of glucosamine and chondroitin sulfate. Clin Orthop . 2000;6(381):229-240.
19. Leffler CT et al.: Glucosamine, chondroitin, and manganese ascorbate for degenerative joint disease of the knee or low back: a randomized, double-blind, placebo-controlled pilot study. Mil Med 1999 Feb;164(2):85-91.
20. Major, PW et al.: Glucosamine vs Ibuprofeen in the Treatment of TMJ. J Rheumatol 2001; 28:1347-1355.
21. Glucosamine sulfate.: Alter Med Rev 1999 Jun;4(3):19305.
22. Mueller-Fassbender H, Bach GL, Haase W et al: Glucosamine sulfate compared to ibuprofen in osteoarthritis of the knee. Osteoarthritis Cartilage 1994; 2:61-69.
23. McAlindon TE, LaValley MP, Gulin JP, Felson DT.: Glucosamine and chondroitin for treatment of osteoarthritis: a systematic quality assessment and meta-analysis. JAMA . 2000;283(11):1469-1475.
24. Morreale P, Manopulo R, Galati M, et al.: Comparision of the anti-inflammatory efficacy of chondroitin sulfate and diclofenac sodium in patients with knee osteoarthritis. J Rheumatol . 1996;23:1385-1391.
25. Muller G, Kramer A.: In vitro action of a combination of selected antimicrobial agents and chondroitin sulfate [abstract]. Chem Biol Interact . 2000;124(2):77-85.
26. McAlindon TE et al.: Glucosamine and chondroitin for treatment of osteoarthritis: a systematic quality assessment and meta-analysis. JAMA 2000 Mar 15;283(11):1469-75.
27. McCarty MF et al.: Sulfates glycosaminoglycans and glucosamine may synergize in promoting synovial hyaluronic acid synthesis. Med Hypotheses 2000 May;54(5):798-802.
28. Obara M, Hirano H, Ogawa M, et al.: Does chondroitin sulfate defend the human uterine cervix against ripening in threatened premature labor? Am J Obstet Gynecol . 2000;182:334-339.
29. Reginster JY et al.: Long term effects of glucosamine sulphate on osteoarthritis progression : a randomised, placebo-controlled clinical trial. Lancet. 2001 Jan, 27; 357 (9252): 251-6
30. Ronca F, Palmieri L, Panicucci P, et al.: Anti-inflammatory activity of chondroitin sulfate.Osteoarthritis Cartilage . 1998; 6(suppl A):14-21.
31. Reichelt A, Forster KK, Fischer M et al: Efficacy and safety of intramuscular Glucosamine sulfate in osteoarthritis of the knee: a randomized, placebo-controlled, double blind study. Arzneimittelforschung 1994; 44:75-80.
32. Tapadinhas MJ, Rivera IC & Bignamini AA: Oral glucosamine sulphate in the management of arthrosis: report on a multi-centre open investigation in Portugal. Pharmatherapeutica 1982; 3:157-168.
33. Yun J, Tomida A, Nagata K et al: Glucose-regulated stresses confer resistance to VP-16 in human cancer cells through a decreased expression of DNA topoisomerase II. Oncol Res 1995; 7(12):583-590.
34. Towheed TE, Anastassiades TP.: Glucosamine and chondroitin for treating symptoms of osteoarthritis. JAMA . 2000;283(11):1483-1484.
35. Zhang JS, Imai T, Otagiri M.: Effects of a cisplatin-chondroitin sulfate A complex in reducing the nephrotoxicity of cisplatin. Arch Toxicol . 2000;74(6):300-307.

 

Weiterführende Quellen:

Wikipedia-Eintrag zu Chondroitin

Wikipedia-Eintrag zu Glucosamin

Glucosamin und Chondroitin-Artikel auf Vitaminwiki.net

 

 

Gamma-Linolensäure

Gamma-Linolensäue: Unentbehrlich für die Bildung von Botenstoffen und als Bestandteil der Zellmembranen

Beschreibung

Die Gamma-Linolensäure (GLA) gehört zu den Omega-6- Fettsäuren und damit zu den physiologisch wichtigen mehrfach ungesättigten Fettsäuren. Besondere Bedeutung hat die Gamma-Linolensäure als strukturgebenden Bestandteil der Zellmambranen und als Ausgangssubstanz für hormonähnliche Reglerstoffe – den so genannten Eicosanoiden.
Sowohl in den Phospholipiden der Zellmembranen sowie den Membranen von Zellorganellen liegt die Gamma-Linolensäure eingebaut vor und verbessert dort die Fließfähigkeit (Fluidität) und damit die Zellfunktionen. Die Gamma-Linolensäure ist hierdurch in allen Körperzellen enthalten, besonders hoch konzentriert im Gehirn und den Nervenzellen.
Die Eicosanoide, darunter vor allem die Prostaglandine (PGE), haben vielfältige hormonähnliche Funktionen, dienen z.B. zur Regulation der Hormonproduktion, wirken Überreaktionen des Immunsystems entgegen, sind entzündungshemmend und schützen die Nervenzellen. Dabei ist es wichtig, dass die Produktion verschiedener Prostaglandine (PGE1, PGE2, u.a.) ausgeglichen und in einem dynamischen Gleichgewicht ist. Diese Funktion übernimmt (neben den Omega-3-Fettsäuren) die Gamma-Linolensäure durch ihre regulierende Wirkung auf die Bildung der Prostaglandine.
Gamma-Linolensäure kommt vor allem im Samenöl der Nachtkerze, des Schwarzkümmels und des Borretsch vor.


Funktionen und Anwendungsbereiche

Funktionen
• Strukturgebender Bestandteil der Zellmembran
• Vorstufe von Eicosanoiden (Botenstoffe), die folgende Funktionen erfüllen:
– Immunmodulation
– Regulierung allergischer und entzündlicher Prozesse
– Regulierung des Blutdrucks
– Blutgerinnung, Regulierung der Blutplättchenverklebung (Thrombozytenaggregation)
– Regulierung des Fettstoffwechsels
– Beeinflussung der glatten Muskulatur

Anwendungsbereiche
• Neurodermitis, Schuppenflechte, Akne, Hautverbrennungen
• Wechseljahrsbeschwerden und Prämenstruelles Syndrom (PMS)
• Aufmerksamkeits-Defizit(-Hyperaktivitäts)-Syndrom (AD(H)S)
• Diabetische Neuropathie
• Migräne
• Erkrankungen, die mit Entzündungsprozessen einhergehen
• Autoimmunerkrankungen
• Rheumatische Erkrankungen und Multiple Sklerose

Neurodermitis, Schuppenflechte, Akne, Hautverbrennungen
Die Gamma-Linolensäure ist als Bestandteil der Zellwand für die Barrierefunktion der Haut unentbehrlich. Sie ist für die Regulierung des Wasserverlustes der Oberhaut verantwortlich und wirkt entzündlichen Hautveränderungen wie Neurodermitis und Schuppenflechte entgegen. Menschen mit Neurodermitis verfügen über erniedrigte Gamma-Linolensäure-Spiegel. Wird dem Körper diese Fettsäure zugeführt, kommt es zu einer schnellen Normalisierung des Gamma-Linolensäure-Spiegels und damit zu einer Verbesserung des Hautzustandes mit Besserung der Symptomatik (Juckreiz, Schuppenbildung, Rötung).
Bei Neurodermitis und Psoriasis (Schuppenflechte) wird eine regelmäßige und langfristige Zufuhr empfohlen.

Wechseljahrsbeschwerden und Prämenstruelles Syndrom (PMS)
Die Gamma-Linolensäure wirkt positiv ausgleichend auf den weiblichen Hormonhaushalt und lindert Wechseljahrsbeschwerden und PMS-Symptome. Gelindert werden können vor allem Hitzewallungen, Brustschwellung, Empfindlichkeit der Brust (Mastodynie), depressive Zustände sowie Reizbarkeit, allgemeine Erschöpfung und Lethargie.

Aufmerksamkeits-Defizit(-Hyperaktivitäts)-Syndrom (AD(H)S)

Die Gamma-Linolensäure ist die wichtigste Omega-6-Fettsäure für Kinder mit ADS und ADHS. Klinische Studien zeigten, dass hyperaktive Kinder weniger der essentiellen Omega-3- sowie Omega-6-Fettsäuren im Blut haben als Kinder ohne ADS und ADHS.

Diabetische Neuropathie

Die diabetische Neuropathie ist eine Nervenschädigung im Rahmen eines Diabetes mellitus und durch Gefühlsverlust, Taubheit und Prickeln in den Händen gekennzeichnet. Die Gamma-Linolensäure kann das Fortschreiten der diabetischen Neuropathie hemmen. Zudem vermag die Fettsäuren eine Verbesserung der Nerven-Leitgeschwindigkeit und damit des Wahrnehmungsvermögens zu erreichen.

Rheumatische Erkrankungen und Multiple Sklerose

Die Einnahme der Gamma-Linolensäure wirkt sich positiv auf das Beschwerdebild von rheumatischen Erkrankungen sowie Multiple Sklerose aus. Der Grund: Die aus der Gamma-Linolensäure entstehenden Prostaglandine verdrängen die für die Entzündungsprozesse der Gelenke verantwortliche Arachidonsäure und lindernd damit die Entzündungsprozesse.
Da die zuviel vorhandene ungünstige Arachidonsäure erst nachhaltig verdrängt werden muss, setzen die Effekte jedoch langsam ein, so dass es mindestens 5 Wochen dauern kann, bis die Beschwerden zurückgehen.


Erhöhter Bedarf und Mangel

Die Balance zwischen Aufnahme, körpereigener Synthese und Bedarf an Gamma-Linolensäure ist bei vielen Menschen gestört. Faktoren wie hoher Alkoholkonsum, einseitige Ernährung, Stress sowie das Alter steigern den Bedarf an Gamma-Linolensäure.

Häufigste Ursachen für erhöhten Bedarf
• erhöhtes Alter
• Wachstum
• Alkoholmissbrauch
• Hoher Konsum gehärteter Fette und Transfettsäuren
• Rauchen
• Schwangerschaft und Stillzeit
• chronische Erkrankungen, Störungen:
– Allergien
– Neurodermtiis
– Diabetes mellitus
– Gastritis
– Multiple Sklerose
– Rheumatische Erkrankungen

Mangelsymptome

• Anämien
• Infektanfälligkeit
• Neigung zu Atopien
• Hautekzeme
• Wundheilungsstörungen
• Störungen der Hautfunktion
• Depression
• Fettleber
• Wachstumsstörungen


Zufuhrempfehlung und Einnahmehinweise

Zufuhrempfehlung
Die normale Dosierung zur Ergänzung der Gamma-Linolensäure liegt bei 150 bis 200 mg.
Bei bestimmten Erkrankungen wie z.B. Neuropathien werden höhere Tagesdosen von bis zu 600 mg eingesetzt.

Gegenanzeigen
• Epileptiker sollten sich vor der Einnahme mit ihrem Arzt besprechen.
• Bei behandlungsbedürftigen Erkrankungen, der Einnahme von Medikamenten und in der Schwangerschaft und Stillzeit ist zudem mit dem behandelnden Arzt Rücksprache zu halten.

Hinweis
Der therapeutische Einsatz von Gamma-Linolensäure sollte mindestens 6 bis 8 Wochen durchgängig andauern.


Literaturquellen

1. Arnold LE, Kleykamp D, Votolato N, Gibson RA, Horrocks L.: Potential link between dietary intake of fatty acid and behavior: pilot exploration of serum lipids in attention-deficit hyperactivity disorder. J Child Adolesc Psychopharmacol . 1994;4(3):171-182.
2. Barham JB, Edens MB, Fonteh AN, Johnson MM, Easter L, Chilton FH.: Addition of eicosapentaenoic acid to gamma-linolenic acid-supplemented diets prevents serum arachidonic acid accumulation in humans. J Nutr . 2000;130(8):1925-1931.
3. Barre DE.: Potential of evening primrose, borage, black currant, and fungal oils in human health. Ann Nutr Metab . 2001;45(2):47-57.
4. Belch JJ, Hill A.: Evening primrose oil and borage oil in rheumatologic conditions. Am J Clin Nutr. 2000;71(1 Suppl):352S-356S.
5. Bendich A.: The potential for dietary supplements to reduce premenstrual syndrome (PMS) symptoms. J Am Coll Nutr . 2000;19(1):3-12.
6. Burgess J, Stevens L, Zhang W, Peck L.: Long-chain polyunsaturated fatty acids in children with attention-deficit hyperactivity disorder. Am J Clin Nutr . 2000; 71(suppl):327S-330S.
7. Calder PC, Miles EA.: Fatty acids and atopic disease. Pediatr Allergy Immunol . 2000;11 Suppl 13:29-36.
8. Calder PC, Zurier RB.: Polyunsaturated fatty acids and rheumatoid arthritis. Curr Opin Clin Nutr Metab Care . 2001;4(2):115-121.
9. Chenoy R, Hussain S, Tayob Y, O’Brien PM, Moss MY, Morse PF.: Effect of oral gamolenic acid from evening primrose oil on menopausal flushing. BMJ . 1994;19(308):501-503.
10. Corbett R, Menez JF, Flock HH, Leonard BE.: The effects of chronic ethanol administration on rat liver and erythrocyte lipid composition: modulatory role of evening primrose oil. Alcohol Alcohol . 1991;26(4);459-464.
11. Darlington LG, Stone TW.: Antioxidants and fatty acids in the amelioration of rheumatoid arthritis and related disorders. Br J Nutr . 2001;85(3):251-269.
12. Davies CL, Loizidou M, Cooper AJ, et al.: Effect of gamma-linolenic acid on cellular uptake of structurally related anthracyclines in human drug sensitive and multidrug resistant bladder and breast cancer cell lines. Eur J Cancer . 1999;35:1534-1540.
13. Engler MM, Schambelan M, Engler MB, Ball DL, Goodfriend TL.: Effects of dietary gamma-linolenic acid on blood pressure and adrenal angiotensin receptors in hypertensive rats. Proc Soc Exp Biol Med . 1998;218(3):234-237.
14. Fan YY, Chapkin RS.: Importance of dietary gamma-linolenic acid in human health and nutrition. J Nutr . 1998; 128(9): 1411-1414.
15. Frenoux JMR, Prost ED, Belleville JL, Prost JL.: A polyunsaturated fatty acid diet lowers blood pressure and improves antioxidant status in spontaneously hypertensive rats. J Nutr . 2001;131(1):39-45.
16. Furse RK, Rossetti RG, Zurier RB.: Gammalinolenic acid, an unsaturated fatty acid with anti-inflammatory properties, blocks amplification of IL-1 beta production by human monocytes . J Immunol . 2001;1;167(1):490-496.
17. Garcia CM, et al.: Gamma linolenic acid causes weight loss and lower blood pressure in overweight patients with family history of obesity. Swed J Biol Med . 1986;4:8-11.
18. Giamarellos-Bourboulis EJ, Grecka P, Dionyssiou-Asteriou A, et al.: In vitro interactions of gamma-linolenic acid and arachidonic acid with ceftazidime on multiresistant Pseudomonas aeruginosa. Lipids . 1999;34:S151-152.
19. Griffini P, Fehres O, Klieverik L, et al.: Dietary W-3 polyunsaturated fatty acids promote colon carcinoma metastasis in rat liver. Cancer Res . 1998;58:3312-3319.
20. Graham-Brown R.: Atopic dermatitis: unapproved treatments or indications. Clin Dermatol. 2000;18(2):153-158.
21. Head RJ, McLennan PL, Raederstorff D, Muggli R, Burnard SL, McMurchie EJ.: Prevention of nerve conduction deficit in diabetic rats by polyunsaturated fatty acids. Am J Clin Nutr. 2000;71:386S-392S.
22. Hederos CA, Berg A. Epogam: Evening primrose oil treatment in atopic dermatitis and asthma. Arch Dis Child. 1996;75(6):494-497
23. Kankaanpaa P, Nurmela K, Erkkila A, et al.: Polyunsaturated fatty acids in maternal diet, breast milk, and serum lipid fattty acids of infants in relation to atopy. Allergy . 2001;56(7):633-638.
24. Kast RE.: Borage oil reduction of rheumatoid arthritis activity may be mediated by increased cAMP that suppresses tumor necrosis factor-alpha. Int Immunopharmacol . 2001;1(12):2197-2199.
25. Kenny FS, Pinder SE, Ellis IO et al.: Gamma linolenic acid with tamoxifen as primary therapy tn breast cancer. Int J Cancer. 2000;85:643-648.
26. Kris-Etherton PM, Taylor DS, Yu-Poth S, et al.: Polyunsaturated fatty acids in the food chain in the United States. Am J Clin Nutr . 2000;71(1 Suppl):179S-188S.
27. Kruger MC, Coetzer H, de Winter R, Gericke G, van Papendorp DH.: Calcium, gamma-linolenic acid and eicosapentaenoic acid supplementation in senile osteoporosis. Aging Clin Exp Res . 1998;10:385-394.
28. Leng GC, Lee AJ, Fowkes FG, et al.: Randomized controlled trial of gamma-linolenic acid and eicosapentaenoic acid in peripheral arterial disease. Clin Nutr . 1998;17(6):265—271,
29. Little C, Parsons T.: Herbal therapy for treating rheumatoic arthritis. Cochrane Database Syst Rev . 2001;(1):CD002948.
30. Manjari V, Das UN.: Effect of polyunsaturated fatty acids on dexamethasone-induced gastric mucosal damage. Prostaglandins Leukot Essent Fatty Acids . 2000;62(2):85-96.
31. Menendez JA, del Mar Barbacid M, Montero S, et al.: Effects of gamma-linolenic acid and oleic acid on paclitaxel cytotoxicity in human breast cancer cells. Eur J Cancer . 2001;37:402-413.
32. Morphake P, Bariety J, Darlametsos J, et al.: Alteration of cyclosporine (CsA)-induced nephrotoxicity by gamma linolenic acid (GLA) and eicosapentaenoic acid (EPA) in Wistar rats. Prostaglandins Leukot Essent Fatty Acids. 1994;50:29-35.
33. Morse PF, Horrobin DF, Manku MS, et al.: Meta-analysis of placebo-controlled studies of the efficacy of Epogram in the treatment of atopic eczema: relationship between plasma essential fatty changes and treatment response. Br J Dermatol . 1989;121(1):75-90.
34. Munoz SE, Lopez CB, Valentich MA, Eynard AR.: Differential modulation by dietary n-6 or n-9 unsaturated fatty acids on the development of two murine mammary gland tumors having different metastatic capabilities. Cancer Lett.1998;126:149-155.
35. Plumb JA, Luo W, Kerr DJ.: Effect of polyunsaturated fatty acids on the drug sensitivity of human tumour cell lines resistant to either cisplatin or doxorubicin. Br J Cancer. 1993;67:728-733.
36. Richardson AJ, Puri BK.: The potential role of fatty acids in attention-deficit/hyperactivity disorder. Prostaglandins Leukot Essent Fatty Acids . 2000;63(1/2):79-87.
37. Rothman D, DeLuca P, Zurier RB.: Botanical lipids: effects on inflammation, immune responses, and rheumatoid arthritis. Semin Arthritis Rheum.1995;25(2):87-96.
38. Shils ME, Olson JA, Shike M, Ross AC.: Modern Nutrition in Health and Disease . 9th ed. Baltimore, Md: Williams & Wilkins; 1999:88-90, 1347-1348.
39. Simopoulos AP.: Essential fatty acids in health and chronic disease. Am J Clin Nutr . 1999;70(3 suppl):560S-569S.
40. Stevens LJ, Zentall SS, Abate ML, Kuczek T, Burgess JR.: Omega-3 fatty acids in boys with behavior, learning and health problems. Physiol Behav . 1996;59(4/5):915-920.
41. Stevens LJ, Zentall SS, Deck JL, et al.: Essential fatty acid metabolism in boys with attention-deficit hyperactivity disorder. Am J Clin Nutr.1995;62:761-768.
42. Stoll BA.: Breast cancer and the Western diet: role of fatty acids and antioxidant vitamins. Eur J Cancer . 1998;34(12):1852-1856.
43. Thompson L, Cockayne A, Spiller RC.: Inhibitory effect of polyunsaturated fatty acids on the growth of Helicobacter pylori: a possible explanation of the effect of diet on peptic ulceration. Gut.1994;35(11):1557-1561.
44. Wainwright PE.: Do essential fatty acids play a role in brain and behavioral development? Neurosci Biobehav Rev. 1992;16(2):193-205.
45. Wakai K, Okamoto K, Tamakoshi A, Lin Y, Nakayama T, Ohno Y.: Seasonal allergic rhinoconjunctivitis and fatty acid intake: a cross-sectional study in Japan. Ann Epidemiol . 2001;11(1):59-64.

 

Weiterführende Einträge:

Wikipedia-Eintrag zu Gamma-Linolensäure

Gamma-Linolensäure-Artikel auf Vitaminwiki.net

Perilla (Alpha-Linolensäure)

Perilla (Perilla frutescens): Reichste Pflanzenquelle für Alpha-Linolensäure

Beschreibung

Das Samenöl des Lippenblütlers Perilla (Perilla frutescens) ist seit einigen Jahren bekannt als eine der reichhaltigsten pflanzlichen Quellen für Omega-3-Fettsäuren und insbesondere der wichtigen Alpha-Linolensäure. Die Alpha-Linolensäure, genannt ALA (engl. alpha-linolenic acid), kann als so genannte essentielle Fettsäure nicht vom Körper hergestellt werden und muss daher über Alpha-Linolensäure-reiche Nahrungsmittel oder Supplementierung zugeführt werden. Da der ALA eine besondere Schutzfunktion für das Kreislauf- und Gefäßsystem zukommt, wird Personen mit erhöhtem Herz-Kreislauf-Risiko die Aufnahme der Alpha-Linolensäure besonders empfohlen. Über komplexe Umbauprozesse dient ALA als Ausgangsstoff zur Bildung spezieller Gewebs-Botenstoffe, so genannter Prostaglandine. Diese körpereigenen Stoffe sind notwendig zur Regulierung verschiedener Mechanismen und Systeme wie u.a. der Blutzirkulation und Fließfähigkeit des Blutes, des Blutfett-Status (auch Cholesterin-Status) und des Blutdrucks.
Das nach gegenwärtigem Wissensstand angestrebte Verhältnis der Omega-6- und Omega-3-Aufnahme von 5 : 1 (es sollten „nur“ etwa fünfmal mehr Omega-6- als Omega-3-Fettsäuren aufgenommen werden) wird mit der herkömmlichen westlichen Ernährungsweise weit verfehlt: Die Fettaufnahme liegt im Durchschnitt bei 10 : 1 (Omega-6 zu Omega-3-Fettsäuren). Die meisten in der Küche eingesetzten Speiseöle liefern ein ungünstiges Verhältnis der essentiellen Fettsäuren. Die häufig verwendeten Sonnenblumen-, Distel-, Maiskeim- und Olivenöle enthalten zwar reichlich Omega-6 und Omega-9-Fettsäuren, jedoch zu geringe Mengen Omega-3-Fettsäuren. Durch die gezielte Ergänzung der Ernährung mit ALA (am besten in Kombination mit den Omega-3-Fettsäuren EPA und DHA) kann ein Ausgleich geschaffen und ein gefäß- und kreislaufschützendes Fettsäureverhältnis gefördert werden.

Anwendungsbereiche und Wirkungen

Anwendungsbereiche
• Unterstützung des Herz-Kreislauf-Systems
• Senkung erhöhter Blutdruckwerte
• Senkung erhöhter Blutfettwerte
• Linderung von Entzündungsprozessen
• Entzündliche Gelenkerkrankungen (Arthritis)
• Verbrennungen (Wundheilung)
• Chronisch-entzündliche Darmerkrankungen

Unterstützung des Kreislauf- und Gefäßsystems
Ein ausgewogenes Verhältnis bei der Aufnahme von Omega-3- und Omega-6-Fettsäuren ist wichtig für verschiedenste Körpermechanismen, die zur Aufrechterhaltung der Gesundheit notwendig sind. Ein ungünstiges Fettsäure-Verhältnis trägt zur Entwicklung von Krankheiten bei, während eine angemessene Balance zur Erhaltung der Gesundheit beiträgt. Ein wichtiger Faktor zur Vorbeugung sowie Behandlung von Herz-Kreislauf-Erkrankungen ist der Austausch von gesättigten Fettsäuren durch ungesättigte Fettsäuren (Omega-3-Fettsäuren) wie der ALA in der Ernährung. Hierdurch verringern sich Risikofaktoren wie Bluthochdruck, erhöhte Cholesterin-(Blutfett)werte und Arteriosklerose signifikant. Die ALA verbessert zudem die Fettsäurezusammensetzung der Zellmembranen und hält so die Gefäßwände elastischer und stabiler gegenüber Schädigungen, die den Grundstein für Arteriosklerose und rigiden Gefäßen legen.

Senkung erhöhter Blutdruckwerte
Eine Umstellung der Ernährung auf eine Omega-3-reiche Ernährungsweise, auch mit Hilfe von gezielter Ergänzung an Omega-3-Fettsäuren, senkt erhöhte Blutdruckwerte bei Hypertonikern signifikant.

Senkung erhöhter Blutfettwerte

Das Fettsäuremuster des Perilla-Öls hat einen günstigen Einfluss auf den Fettstoffwechsel. Speziell der hohe Gehalt an ALA vermag die Triglycerid-, LDL- und Gesamt-Cholesterinwerte zu senken und das HDL/LDL-Verhältnis zu verbessern. Dies ist ein wichtiger Faktor für „glatte“, heißt elastische, und stabile Gefäßwände.

Linderung von Entzündungsprozessen
Omega-3-Fettsäuren reduzieren über die Bildung entzündungshemmender Eicosanoide grundsätzlich alle Entzündungsprozesse im Körper, hingegen neigen viele Omega-6 Fettsäuren zur Förderung einer Entzündung. Alle chronischen Erkrankungen, die mit Entzündungsprozessen verbunden sind, zum Beispiel degenerative (= durch Verschleiß, nicht genetisch bedingte) Gelenkerkrankungen, Gefäßerkrankungen und entzündliche Darmerkrankungen werden daher günstig von einer Ergänzung an Omega-3-Fettsäuren beeinflusst.

Entzündliche Gelenkerkrankungen (Arthritis)
Klinische Studien zeigen, dass die Ergänzung von Omega-3-Fettsäuren zu einem Rückgang von entzündlichen Gelenkschmerzen, morgendlicher Steifigkeit und zu einer Verbesserung der Mobilität führt. In vielen Fällen kann damit die Medikation reduziert werden.

Verbrennungen (Wundheilung)
Essentielle Omega-3-Fettsäuren werden auch zur Förderung der Wundheilung bei Brandwunden eingesetzt. Sie fördern ein gesundes, heilungsförderndes Gleichgewicht von Proteinen.

Chronisch-entzündliche Darmerkrankungen
Menschen mit Morbus Crohn, einer chronisch-entzündlichen Darmerkrankung, weisen mehrheitlich eine Unterversorgung an Omega-3-Fettsäuren auf. Erste Studien zeigten, dass die Zufuhr an Omega-3-Fettsäuren die Symptome von entzündlichen Darmerkrankungen reduzieren konnten.

Weitere Einsatzgebiete

Migräne, Psoriasis (Schuppenflechte), Aufmerksamkeits-Defizit-Syndrom (ADS), Glaukom (Grüner Star)


Wirkstoffe

Das Öl der Perillasamen enthält 60 Prozent Alpha-Linolensäure (ALA).

Zufuhrempfehlung und Einnahmehinweise

Zufuhrempfehlung
Eine optimale Aufnahme an Alpha-Linolensäure kann durch eine tägliche Ergänzung von 1.000 bis 1.500 mg Perilla-Öl erreicht werden, die am besten auf die Mahlzeiten verteilt wird.

Gegenanzeigen
Bei behandlungsbedürftigen Erkrankungen, der Einnahme von Medikamenten und in der Schwangerschaft und Stillzeit ist zudem mit dem behandelnden Arzt Rücksprache zu halten.

Hinweise zur Einnahme

Deutliche Effekte der Ergänzung mit Omega-3-Fettsäuren auf verschiedene Parameter wie z.B. den Fettstoffwechsel (Blutfettwerte) werden nach 6 bis 8 Wochen beobachtet.


Literaturquellen

1. Banno N, Akihisa T, Tokuda H, et al.: Triterpene acids from the leaves of Perilla frutescens and their anti-inflammatory and antitumor-promoting effects. Biosci Biotechnol Biochem . 2004;68:85-90.
2. Chung, M.Y., L.S. Hwang, and B.H. Chiang.: 1986. Concentration of perilla anthocyanins by ultrafiltration. Food Sci. 51:1494-1497, 1510.
3. Folger, A.H.: 1937. The digestibility of perilla meal, hempseed meal, and babassu meal, as determined for ruminants. Univ. of California, College of Agr., Agr. Expt. Sta., Berkeley. Bul. 604.
4. Hrboticky N, Zimmer B, Weber PC.: Alpha-Linolenic acid reduces the lovastatin-induced rise in arachidonic acid and elevates cellular and lipoprotein eicosapentaenoic and docosahexaenoic acid levels in Hep G2 cells. J Nutr Biochem . 1996;7:465-471.
5. Hu FB, Stampfer MJ, Manson JE et al.: Dietary intake of alpha-linolenic acid and risk of fatal ischemic heart disease among women. Am J Clin Nutr . 1999;69:890-897.
6. Ishikura, N.: 1981. Anthocyanins and flavones in leaves and seeds of Perilla plant. Agr. Biol. Chem. 45:1855-1860.
7. Kanzaki T, Kimura S.: Occupational allergic contact dermatitis from Perilla frutescens (shiso). Contact Dermatitis . 1992;26:55-56.
8. Kashima, M., G.-S. Cha, Yoshihiro, J. Hirano, and T. Miyazawa.: 1991. The antioxidant effects of phospholipids on perilla oil. Amer. Oil Chem. Soc.
9. Koezuka, Y., G. Honda, S. Sakamoto, and M. Tabata.: 1985b. Genetic control of anthocyanin production in Perilla frutescens. Shoyakugaku Zasshi 39:228-231.
10. Kurita, N. and S. Koike.: 1981. Synergistic antimicrobial effect of perilla and NaCl (in Japanese). Nippon Nogeikagaku Kaishi 55:43-46.
11. Lee, B.H., J.I. Lee, C.B. Park, S.W. Lee, and Y.H. Kim.: 1993. Fatty acid composition and improvement of seed oil in perilla. Crop Production and Improvement Technology in Asia :471-479.
12. Nago, Y., S. Fujioka, T. Takahashi, and T. Matsuoka.: 1975. Studies on the quality of the chinese drug “soyo” and the cultivation of the original plant (in Japanese). Takeda Res. Lab. 34:33-42.
13. Nakazawa T, Yasuda T, Ueda J, Ohsawa K.: Antidepressant-like effects of apigenin and 2,4,5-trimethoxycinnamic acid from Perilla frutescens in the forced swimming test. Biol Pharm Bull . 2003;26:474-480.
14. Narisawa T, Takahashi M, Kotanagi H, et al.: Inhibitory effect of dietary perilla oil rich in the n-3 polyunsaturated fatty acid alpha-linolenic acid on colon carcinogenesis in rats. Jpn J Cancer Res . 1991;82:1089-1096.
15. T, Yasuda T, Ueda J, Ohsawa K.: Antidepressant-like effects of apigenin and 2,4,5-trimethoxycinnamic acid from Perilla frutescens in the forced swimming test. Biol Pharm Bull . 2003;26:474-480.
16. Misra, L.N., and A. Husain. 1987. The essential oil of Perilla ocimoides: A rich source of rosefuran. Planta Med. 53:379-390.
17. Nishizawa, A., G. Honda, and M. Tabata.: 1989. Determination of final steps in biosyntheses of essential oil components in Perilla frutescens. Planta Med. 55:251-253.
18. Perry, L.M., and J. Metzger.: 1980. Medicinal plants of east and southeast Asia. Massachusetts Inst. of Technol., Cambridge.
19. Sakono M, Yoshida K, Yahiro M.: Combined effects of dietary protein and fat on lipid metabolism in rats. J Nutr Sci Vitaminol . 1993;39:335-343.
20. Suyama, K., M. Tamate, and S. Adachi.: 1983. Color stability of shisonin, red pigment of a perilla (Perilla ocimoides L. var. crispa Benth.). Food Chem. 10:69-77.
21. The International Society for the Study of Fatty Acids and Lipids (ISSFAL). Recommendations for the essential fatty acid requirement for infant formulas (policy statement). 2001.
22. Ueda H, Yamazaki C, Yamazaki M.: Luteolin as an anti-inflammatory and anti-allergic constituent of Perilla frutescens . Biol Pharm Bull . 2002;25:1197-1202.
23. Ueda H, Yamazaki C, Yamazaki M.: Inhibitory effect of Perilla leaf extract and luteolin on mouse skin tumor promotion. Biol Pharm Bull . 2003;26:560-563.
24. Umezawa M, Kogishi K, Yoshimura S, et al.: High-linoleate and high-α-linolenate diets affect learning ability and natural behavior in SAMR1 mice. J Nutr . 1999;129:431-437.
25. Yamamoto, N., M. Saitoh, A. Moriuchi, M. Nomura, and H. Okuyama.: 1987. Effect of dietary linolenate/linoleate balance on brain lipid compositions and learning ability of rats. Lipid Res. 28:144-151.

 

Weiterführende Quellen:

Wikipedia-Eintrag zu Perilla (Perilla frutescens)

Perilla-Artikel auf Vitaminwiki.net